Windows 8

Механические вычислительные устройства. Вычислительная машина. Появление персональных компьютеров

История создания и развития средств вычислительной техники

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов; для отдельной же машины вопрос о ее принадлежности к тому или иному поколению решается достаточно просто.

Еще во времена древнейших культур человеку приходилось решать задачи, связанные с торговыми расчетами, с исчислением времени, с определением площади земельных участков и т. д. Рост объемов этих расчетов приводил даже к тому, что из одной страны в другую приглашались специально обученные люди, хорошо владешие техникой арифметического счета. Поэтому рано или поздно должны были появиться устройства, облегчающие выполнение повседневных расчетов. Так, в Древней Греции и в Древнем Риме были созданы приспособления для счета, называемые абак. Абак называют также римскими счетами. Эти счеты представляли собой костяную, каменную или бронзовую доску с углублениями – полосами. В углублениях находились костяшки, и счет осуществлялся передвижением костяшек.

В странах Древнего Востока существовали китайские счеты. На каждой нити или проволоке в этих счетах имелось по пятьи по две костяшки. Счет осуществлялся единицами и пятерками. В России для арифметических вычеслений применялись русские счеты, появившиеся в 16 веке, но кое – где счеты можно встретить и сегодня.

Развитие приспособлений для счета шло в ногу с достижениями математики. Вскоре после открытия логарифмов в 1623 г. была изобретена логарифмическая линейка, её автором был английский математик Эдмонд Гантер. Логарифмической линейке суждена была долгая жизнь: от 17 века до нашего времени.

Однако ни абак, ни счеты, ни логарифмическая линейка не означают механизации процесса вычислений. В 17 веке выдающимся французким ученым Блезом Паскалем было изобретено принципиально новое счетное устройство – арифметическая машина. В основу её работы Б. Паскаль положил извесную до него идею выполнения вычислений с помощью металических шестеренок. В 1645 г. им была построена первая суммирующая машина, а в 1675 г. Паскалю удается создать настоящую машину, выполняющую все четыре арифметических действия. Почти одновременно с Паскалем в 1660 – 1680 гг. Сконструировал счетную машину великий немецкий математик Готфирд Лейбниц.

Счетные машины Паскаля и Лейбница стали прообразом арифмометра. Первый арифмометр для четырех арифметических действий, нашедший арифметическое применение, удалось построить только через сто лет, 1790 г., немецкому часовому мастеру Гану. Впоследствии устройство арифмометра совершенствовалось многими механиками из Англии, Франции, Италии, России, Швейцарии. Арифмометры применялись для выполнения сложных вычислений при проектировании и строительстве кораблей. Мостов, зданий, при проведении финансовых операций. Но производительность работы на арифмометрах оставалась невысокой, настоятельным требованием времени была автоматизация вычислений.

В 1833 г. анлийский ученый Чарлз Бэбидж, занимавшийся составлением таблиц для навигации, разработал проект «аналитической машины». По его замыслу, эта машина должна была стать гигантским арифмометром с программным управлением. В машине Бэбиджа предусмотрены были также арифметические и запоминающие устройства. Его машина стала прообразом будущих компьютеров. Но в ней использовались далеко не совершенные узлы, например, для запоминания разрядов десятичного числа в ней применялись зубчатые колеса. Осуществить свой проект Бэбиджу не удалось из – за недостаточного развития техники, и «аналитическая машина» на время была забыта.

Лишь спустя 100 лет машина Бэбиджа привлекла внимкние инженеров. В конце 30 – х годов 20 века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. К. Уцзе создал машину Z3, полностью управляемую с помощью программы.

В 1944 г. американец Говард Айкен на одном из предприятий фирмы IBM построил мощную по тем временам машину «Марк – 1». В этой машине для представления чисел использовались механические элементы – счетные колеса, а для управления применялись электромеханические реле.

Поколения ЭВМ

Историю развития ЭВМ удобно описывать, пользуясь представлением о поколениях вычислительных машин. Каждое поколене ЭВМ характеризуется констуктивными особенностями и возможнотями. Приступим к описанию каждого из поколений, однако нужно помнить, что деление ЭВМ на поколения является условным, поскольку в одно и то же время выпускались машины разного уровня.

Первое поколение

Резкий скачек в развитии вычислительной техники произошел в 40 – х годах, после Второй мировой войны, и связан он был с появлением качественно новых электронных устройств – электронно – вакуумных ламп, работали значительно быстрее, чем схемы на электромеханическом реле, а релейные машины быстро вытеснены болеепроизводительными и надежными электронными вычислительными машинами (ЭВМ). Применение ЭВМ значительно расширило круг решаемых задач. Стали доступны задачи, которые раньше просто не ставились: расчеты инженерных сооружений, вычисления двежения планет, баллистические расчеты и т.д.

Первая ЭВМ создавалась в 1943 – 1946 гг. в США и называлась она ЭНИАК. Эта машина содержала около 18 тысяч электронных ламп, множество электромеханических реле, причем ежемесячно выходило из строя около 2 тысяч ламп. ЦУ машины ЭНИАК, а также у других первых ЭВМ, был серьезный недостаток – исполняемая программа хранилась не в памяти машины, а набаралась сложным образом с помощью внешних перемычек.

В 1945 г. извесный математик и физик – теоретик фон Нейман сформулировал общие принципы работы универсальных вычислительных устройств. Согласно фон Нейману вычислительная машина должна была управляться программой с последовательным выполнением команд, а сама программа – храниться в памяти машины. Первая ЭВМ с хранимой в памяти программой была построена в Англии в 1949 г.

В1951 году в СССР была создана МЭСМ, эти работы проводились в Киеве в Институте электродинамики под руководством крупнейшего конструктора вычислительной техники С. А. Лебедева.

ЭВМ постоянно совершенствовались, благодаря чему к середине 50 – х годов их быстродействие удалось повысить от нескольких сотен до нескольких десятков тысяч операций в секунду. Однако при этом электронная лампа оставалась самым надежным элементом ЭВМ. Использование ламп стало тормозить дальнейший прогресс вычислительной техники.

Впоследствии на смену лампам пришли полупроводниковые приборы, тем самым завершился первый этап развития ЭВМ. Вычислительные машины этого этапа принято называть ЭВМ первого поколения

Действительно, ЭВМ первого поколения размещались в больших машинных залах, потребляли много электроэнергии и требовали охлаждения с помощью мощных вентилятогров. Программы для этих ЭВМ нужно было составлять в машинных кодах, и этим могли заниматься только специалисты, знающие в деталях устройство ЭВМ.

Второе поколение

Разработчики ЭВМ всегда следовали за прогрессом в электронной технике. Когда в середине 50 – х годов на смену электронным лампам пришли полупроводниковые приборы, начался перевод ЭВМ на полупроводники.

Полуповодниковые приборы (транзисторы, диоды) были, во – первых, значительно компактнее своих ламповых предшественников. Во – вторых они обладали значительно большим сроком службы. В – третьих, потребление энергии у ЭВМ на полупроводниках было существенно ниже. С внедрением цифровых элементов на полупроводниковых приборах началось создание ЭВМ второго поколения.

Благодаря применению более совершенной элементной базы начали создаваться относительно небольшие ЭВМ, произошло естественное разделение вычислительных машин на большие, средние и малые.

В СССР были разработаны и широко использовались серии малых ЭВМ «Раздан», «Наири». Уникальной по своей архитектуре была машина «Мир», разработанная в 1965 г. в Институте кибернетики Академии Наук УССР. Она предназначалась для инженерных расчетов, которые выполнял на ЭВМ сам пользователь без помощи оператора.

К средним ЭВМ относились отечественные машины серий «Урал», «М – 20» и «Минск». Но рекордной среди отечественных машин этого поколния и одной из лучших в мире была БЭСМ – 6 («большая электронно – счетная машина», 6 – я модель), которая была создана коллективом академика С. А. Лебедева. Производительность БЭСМ – 6 была на два – три порядка выше, чем у малых и средних ЭВМ, и составляла более 1 млн. Операций в секунду. За рубежем наиболее распространенными машинами второго поколения были «Эллиот» (Англия), «Сименс» (ФРГ), «Стретч» (США).

Третье поколение

Очередная смена поколений ЭВМ произошла в конце 60 – х годов при замене полупроводниковых приборов в устройствах ЭВМ на интегральлые схемы. Интегральная схема (микросхема) – это небольшая пластинка кристалла кремния, на которой размещаются сотни и тысячи элементов: диодов, транзисторов, конденсаторов, резисторов и т. д.

Применение интегральных схем позволило увеличить количество электронных элементов в ЭВМ без увеличения их реальных размеров. Быстродействие ЭВМ возросло до 10 миллионов операций в секунду. Кроме того, составлять программы для ЭВМ стало по силам простым пользователям, а не только специалистам – электронщикам.

В третьем поколении появились крупные серии ЭВМ, различающиеся своей производительностью и назначением. Это семейство больших и средних машин IBM360/370, разработанных в США. В Советском Союзе и в странах СЭВ были созданы аналогические серии машин: ЕС ЭВМ (Единая Система ЭВМ, машины большие и средние), СМ ЭВМ (Система Малых ЭВМ) и «Электроника» (система микро – ЭВМ).

История развития вычислительной техники


2. «Время - события - люди»


1. Стадии развития вычислительной техники

Вплоть до XVII в. деятельность общества в целом и каждого человека в отдельности была направлена на овладение веществом, т. е. есть познание свойств вещества и изготовление сначала примитивных, а потом все более сложных орудий труда, вплоть до механизмов и машин, позволяющих изготовлять потребительские ценности.

Затем в процессе становления индустриального общества на первый план вышла проблема овладения энергией - сначала тепловой, затем электрической, наконец, атомной. Овладение энергией позволило освоить массовое производство потребительских ценностей и, как следствие, повысить уровень жизни людей и изменить характер их труда.

В то же время человечеству свойственна потребность выразить и запомнить информацию об окружающем мире - так появились письменность, книгопечатание, живопись, фотография, радио, телевидение. В истории развития цивилизации можно выделить несколько информационных революций - преобразование общественных отношений из-за кардинальных изменений в сфере обработки информации, информационных технологий. Следствием подобных преобразований являлось приобретение человеческим обществом нового качества.

В конце XX в. человечество вступило в новую стадию развития - стадию построения информационного общества. Информация стала важнейшим фактором экономического роста, а уровень развития информационной деятельности и степень вовлеченности и влияния ее на глобальную информационную инфраструктуру превратились в важнейшее условие конкурентоспособности страны в мировой экономике. Понимание неизбежности прихода этого общества наступило значительно раньше. Австралийский экономист К. Кларк еще в 40-е годы говорил о приближении эпохи общества информации и услуг, общества новых технологических и экономических возможностей. Американский экономист Ф. Махлуп выдвинул предположение о наступлении информационной экономики и превращении информации в важнейший товар в конце 50-х гг. В конце 60-х гг. Д. Белл констатировал превращение индустриального общества в информационное. Что касается стран, ранее входивших в СССР, то процессы информатизации в них развивались замедленными темпами.

Информатика меняет всю систему общественного производства и взаимодействия культур. С наступлением информационного общества начинается новый этап не только научно-технической, но социальной революции. Меняется вся система информационных коммуникаций. Разрушение старых информационных связей между отраслями экономики, направлениями научной деятельности, регионами, странами усилило экономический кризис конца века в странах, которые уделяли развитию информатизации недостаточное внимание. Важнейшая задача общества - восстановить каналы коммуникации в новых экономических и технологических условиях для обеспечения четкого взаимодействия всех направлений экономического, научного и социального развития как отдельных стран, так и в глобальном масштабе.

Компьютеры в современном обществе взяли на себя значительную часть работ, связанных с информацией. По историческим меркам компьютерные технологии обработки информации еще очень молоды и находятся в самом начале своего развития. Компьютерные технологии сегодня преобразуют или вытесняют старые технологии обработки информации.


2. «Время - события - люди»

Рассмотрим историю развития вычислительных средств и методов «в лицах» и объектах (табл.1).

Таблица 1. Основные события в истории развития вычислительных методов, приборов, автоматов и машин

Джон Непер

Шотландец Джон Непер в 1614-м г. опубликовал «Описание удивительных таблиц логарифмов». Он обнаружил, что сумма логарифма чисел а и b равна логарифму произведения этих чисел. Поэтому действие умножения сводилось к простой операции сложения. Также им разработан инструмент перемножения чисел - «костяшки Непера». Он состоял из набора сегментированных стерженьков, которые можно было располагать таким образом, что, складывая числа в прилегающих друг к другу по горизонтали сегментах, получали результат их умножения. «Костяшки Непера» вскоре были вытеснены другими вычислительными устройствами (в основном механического типа). Таблицы Непера, расчет которых требовал очень много времени, были позже «встроены» в удобное устройство, ускоряющее процесс вычисления, - логарифмическую линейку (Р. Биссакар, конец 1620 г.)

Вильгельм Шиккард

Считалось, что первую механическую счетную машину изобрел великий французский математик и физик Б. Паскаль в 1642 г. Однако в 1957 г. Ф. Гаммер (ФРГ, директор Кеплеровского научного центра) обнаружил доказательства создания механической, вычислительной машины приблизительно за два десятилетия до изобретения Паскаля Вильгельмом Шиккардом. Он назвал ее «часы для счета». Машина предназначалась для выполнения четырех арифметических действий и состояла из частей: суммирующее устройство; множительное устройство; механизм для промежуточных результатов. Суммирующее устройство состояло из зубчатых передач и представляло простейшую форму арифмометра. Предложенная схема механического счета считается классической. Однако эту простую и эффективную схему пришлось изобретать заново, так как сведения о машине Шиккарда не стали всеобщим достоянием

Блэз Паскаль

В 1642 г., когда Паскалю было 19 лет, была изготовлена первая действующая модель суммирующей машины. Через несколько лет Блэз Паскаль создал механическую суммирующую машину («паскалина»), которая позволяла складывать числа в десятичной системе счисления. В этой машине цифры шестизначного числа задавались путем соответствующих поворотов дисков (колесиков) с цифровыми делениями, результат операции можно было прочитать в шести окошках - по одному на каждую цифру. Диск единиц был связан с диском десятков, диск десятков - с диском сотен и т. д. Другие операции выполнялись с помощью довольно неудобной процедуры повторных сложений, и в этом заключался основной недостаток «паскалины». Всего приблизительно за десятилетие он построил более 50 различных вариантов машины. Изобретенный Паскалем принцип связанных колес явился основой, на которой строилось большинство вычислительных устройств на протяжении следующих трех столетий

Готфрид Вильгельм Лейбниц

В 1672 г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христианом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство для расчетов. В 1673 г. он завершил создание механического калькулятора. Развив идеи Паскаля, Лейбниц использовал операцию сдвига для поразрядного умножения чисел. Сложение производилось на нем по существу так же, как и на «паска-лине», однако Лейбниц включил в конструкцию движущуюся часть (прообраз подвижной каретки будущих настольных калькуляторов) и ручку, с помощью которой можно было крутить ступенчатое колесо или - в последующих вариантах машины - цилиндры, расположенные внутри аппарата

Жозеф-Мари Жаккар

Развитие вычислительных устройств связано с появлением перфорационных карт и их применением. Появление же перфорационных карт связано с ткацким производством. В 1804 г. инженер Жозеф-Мари Жаккар построил полностью автоматизированный станок (станок Жаккара), способный воспроизводить сложнейшие узоры. Работа станка программировалась с помощью колоды перфокарт, каждая из которых управляла одним ходом челнока. Переход к новому рисунку происходил заменой колоды перфокарт
Чарльз Бэббидж (1791-1871) Он обнаружил погрешности в таблицах логарифмов Непера, которыми широко пользовались при вычислениях астрономы, математики, штурманы дальнего плавания. В 1821 г. приступил к разработке своей вычислительной машины, которая помогла бы выполнить более точные вычисления. В 1822 г. была построена разностная машина (пробная модель), способная рассчитывать и печатать большие математические таблицы. Это было очень сложное, большое устройство и предназначалось для автоматического вычисления логарифмов. Работа модели основывалась на принципе, известном в математике как «метод конечных разностей»: при вычислении многочленов используется только операция сложения и не выполняется умножение и деление, которые значительно труднее поддаются автоматизации. В последующем он пришел к идее создания более мощной - аналитической машины. Она не просто должна была решать математические задачи определенного типа, а выполнять разнообразные вычислительные операции в соответствии с инструкциями, задаваемыми оператором. По замыслу это не что иное, как первый универсальный программируемый компьютер. Аналитическая машина в своем составе должна была иметь такие компоненты, как «мельница» (арифметическое устройство по современной терминологии) и «склад» (память). Инструкции (команды) вводились в аналитическую машину с помощью перфокарт (использовалась идея программного управления Жаккара с помощью перфокарт). Шведский издатель, изобретатель и переводчик Пер Георг Шойц воспользовавшись советами Бэббеджа, построил видоизмененный вариант этой машины. В 1855 г. машина Шойца была удостоена золотой медали на Всемирной выставке в Париже. В дальнейшем один из принципов, лежащих в основе идеи аналитической машины, - использование перфокарт -нашел воплощение в статистическом табуляторе, построенном американцем Германом Холлеритом (для ускорения обработки результатов переписи населения в США в 1890 г.)

Огаста Ада Байрон

(графиня Лавлейс)

Графиня Огаста Ада Лавлейс, дочь поэта Байрона, совместно с Ч. Бэббиджем работала над созданием программ для его счетных машин. Ее работы в этой области были опубликованы в 1843 г. Однако в то время считалось неприличным для женщины издавать свои сочинения под полным именем, и Лавлейс поставила на титуле только свои инициалы. В материалах Бэббиджа и комментариях Лавлейс намечены такие понятия, как «подпрограмма» и «библиотека подпрограмм», «модификация команд» и «индексный регистр», которые стали употребляться только в 50-х гг. XX в. Сам термин «библиотека» был введен Бэббиджем, а термины «рабочая ячейка» и «цикл» предложила А. Лавлейс. «Можно с полным основанием сказать, что аналитическая машина точно так же плетет алгебраические узоры, как ткацкий станок Жак-кара воспроизводит цветы и листья», - писала графиня Лавлейс. Она фактически была первой программисткой (в ее честь был назван язык программирования Ада)

Джордж Буль

Дж. Буль по праву считается отцом математической логики. Его именем назван раздел математической логики - булева алгебра. В 1847 г. написал статью «Математический анализ логики». В 1854 г. Буль развил свои идеи в работе под названием «Исследование законов мышления». Эти труды внесли революционные изменения в логику как науку. Дж. Буль изобрел своеобразную алгебру - систему обозначений и правил, применяемую к всевозможным объектам, от чисел и букв до предложений. Пользуясь этой системой, Буль мог закодировать высказывания (утверждения) с помощью своего языка, а затем манипулировать ими подобно тому, как в математике манипулируют обычными числами. Три основные операции системы - это И, ИЛИ и НЕ

Пафнутий Львович Чебышев

Им была разработана теория машин и механизмов, написан ряд работ, посвященных синтезу шарнирных механизмов. Среди многочисленных изобретенных им механизмов имеется несколько моделей арифмометров, первая из которых была сконструирована не позднее 1876 г. Арифмометр Чебышева для того времени был одной из самых оригинальных вычислительных машин. В своих конструкциях Чебышев предложил принцип непрерывной передачи десятков и автоматический переход каретки с разряда на разряд при умножении. Оба эти изобретения вошли в широкую практику в 30-е гг. XX в. в связи с применением электропривода и распространением полуавтоматических и автоматических клавишных вычислительных машин. С появлением этих и других изобретений стало возможно значительно увеличить скорость работы механических счетных устройств
Алексей Николаевич Крылов (1863-1945) Русский кораблестроитель, механик, математик, академик АН СССР. В 1904 г. он предложил конструкцию машины для интегрирования обыкновенных дифференциальных уравнений. В 1912 г. такая машина была построена. Это была первая интегрирующая машина непрерывного действия, позволяющая решать дифференциальные уравнения до четвертого порядка

Вильгодт Теофил Однер

Выходец из Швеции Вильгодт Теофил Однер в 1869 г. приехал в Петербург. Некоторое время он работал на заводе «Русский дизель» на Выборгской стороне, на котором в 1874 г. был изготовлен первый образец его арифмометра. Созданные на базе ступенчатых валиков Лейбница первые серийные арифмометры имели большие размеры в первую очередь потому, что на каждый разряд нужно было выделять отдельный валик. Однер вместо ступенчатых валиков применил более совершенные и компактные зубчатые колеса с меняющимся числом зубцов - колеса Однера. В 1890 г. Однер получает патент на выпуск арифмометров и в этом же году было продано 500 арифмометров (очень большое количество по тем временам). Арифмометры в России назывались: «Арифмометр Однера», «Оригинал-Однер», «Арифмометр системы Однер» и др. В России до 1917 г. было выпущено примерно 23 тыс. арифмометров Однера. После революции производство арифмометров было налажено на Сущевском механическом заводе им. Ф.Э.Дзержинского в Москве. С 1931 г. они стали называться арифмометры «Феликс». Далее в нашей стране были созданы модели арифмометров Однера с клавишным вводом и электроприводом
Герман Холлерит (1860-1929) После окончания Колумбийского университета поступает на работу в контору по переписи населения в Вашингтоне. В это время США приступили к исключительно трудоемкой (длившейся семь с половиной лет) ручной обработке данных, собранных в ходе переписи населения в 1880 г. К 1890 г. Холлерит завершил разработку системы табуляции на базе применения перфокарт. На каждой карте имелось 12 рядов, в каждом из которых можно было пробить по 20 отверстий, они соответствовали таким данным, как возраст, пол, место рождения, количество детей, семейное положение и прочим сведениям, включенным в вопросник переписи. Содержимое заполненных формуляров переносилось на карты путем соответствующего перфорирования. Перфокарты загружались в специальные устройства, соединенные с табуляционной машиной, где они нанизывались на ряды тонких игл, по одной игле на каждую из 240 перфорируемых позиций на карте. Когда игла попадала в отверстие, она замыкала контакт в соответствующей электрической цепи машины. Полный статистический анализ результатов занял два с половиной года (втрое быстрее по сравнению с предыдущей переписью). Впоследствии Холлерит организовал фирму «Computer Tabulating Recording» (CTR). Молодой коммивояжер этой компании Том Уотсон первым увидел потенциальную прибыльность продажи счетных машин американским бизнесменам на основе перфокарт. Позднее он возглавил компанию и в 1924 г. переименовал ее в корпорацию «International Business Machines» (IBM)

Ванневар Буш

В 1930 г. построил механическое вычислительное устройство - дифференциальный анализатор. Это была машина, на которой можно было решать сложные дифференциальные уравнения. Однако она обладала многими серьезными недостатками, прежде всего, гигантскими размерами. Механический анализатор Буша представлял собой сложную систему валиков, шестеренок и проволок, соединенных в серию больших блоков, которые занимали целую комнату. При постановке задачи машине оператор должен был вручную подбирать множество шестереночных передач. На это уходило обычно 2-3 дня. Позднее В. Буш предложил прототип современного гипертекста - проект МЕМЕХ (MEMory EXtention - расширение памяти) как автоматизированное бюро, в котором человек хранил бы свои книги, записи, любую получаемую им информацию таким образом, чтобы в любой момент воспользоваться ею с максимальной быстротой и удобством. Фактически это должно было быть сложное устройство, снабженное клавиатурой и прозрачными экранами, на которые бы проецировались тексты и изображения, хранящиеся на микрофильмах. В МЕМЕХ устанавливались бы логические и ассоциативные связи между любыми двумя блоками информации. В идеале речь идет о громадной библиотеке, универсальной информационной базе

Джон Винсент Атанасофф

Профессор физики, автор первого проекта цифровой вычислительной машины на основе двоичной, а не десятичной системы счисления. Простота двоичной системы счисления в сочетании с простотой физического представления двух символов (0, 1) вместо десяти (0, 1,..., 9) в электрических схемах компьютера перевешивала неудобства, связанные с необходимостью перевода из двоичной системы в десятичную и обратно. Кроме того, применение двоичной системы счисления способствовало уменьшению размеров вычислительной машины и снизила бы ее себестоимость. В 1939 г. Атанасофф построил модель устройства и стал искать финансовую помощь для продолжения работы. Машина Атанасоффа была практически готова в декабре 1941 г., но находилась в разобранном виде. В связи с началом Второй мировой войны все работы по реализации этого проекта прекратились. Лишь в 1973 г. приоритет Атанасоффа как автора первого проекта такой архитектуры вычислительной машины был подтвержден решением федерального суда США
Говард Айкен В 1937 г. Г. Айкен предложил проект большой счетной машины и искал людей, согласных профинансировать эту идею. Спонсором выступил Томас Уотсон, президент корпорации IBM: его вклад в проект составил около 500 тыс. долларов США. Проектирование новой машины «Марк-1», основанной на электромеханических реле, началось в 1939 г. в лабораториях Нью-Йоркского филиала IBM и продолжалось до 1944 г. Готовый компьютер содержал около 750 тыс. деталей и весил 35 т. Машина оперировала двоичными числами до 23 разрядов и перемножала два числа максимальной разрядности примерно за 4 с. Поскольку создание «Марк-1» длилось достаточно долго, пальма первенства досталась не ему, а релейному двоичному компьютеру Z3 Конрада Цузе, построенному в 1941 г. Стоит отметить, что машина Z3 была значительно меньше машины Айкена и к тому же дешевле в производстве

Конрад Цузе

В 1934 г., будучи студентом технического вуза (в Берлине), не имея ни малейшего представления о работах Ч. Бэббиджа, К. Цузе начал разрабатывать универсальную вычислительную машину, во многом подобную аналитической машине Бэббиджа. В 1938 г. он завершил постройку машины, занимавшую площадь 4 кв. м., названную Z1 (по-немецки его фамилия пишется как Zuse). Это была полностью электромеханическая программируемая цифровая машина. Она имела клавиатуру для ввода условий задач. Результаты вычислений высвечивались на панели с множеством маленьких лампочек. Ее восстановленная версия хранится в музее Verker und Technik в Берлине. Именно Z1 в Германии называют первым в мире компьютером. Позднее Цузе стал кодировать инструкции для машины, пробивая отверстия в использованной 35-миллиметровой фотопленке. Машина, работавшая перфорированной лентой, получила название Z2. В 1941 г. Цузе построил программно-управляемую машину, основанную на двоичной системе счисления - Z3. Эта машина по многим своим характеристикам превосходила другие машины, построенные независимо и параллельно в иных странах. В 1942 г. Цузе совместно с австрийским инженером-электриком Хельмутом Шрайером предложили создать компьютер принципиально нового типа - на вакуумных электронных лампах. Эта машина должна была работать в тысячу раз быстрее, чем любая из машин, имевшихся в то время в Германии. Говоря о потенциальных сферах применения быстродействующего компьютера, Цузе и Шрайер отмечали возможность его использования для расшифровки закодированных сообщений (такие разработки уже велись в различных странах)

Алан Тьюринг

Английский математик, дал математическое определение алгоритма через построение, названное машиной Тьюринга. В период Второй мировой войны немцы использовали аппарат «Enigma» для шифровки сообщений. Без ключа и схемы коммутации (немцы их меняли три раза в день) расшифровать сообщение было невозможно. С целью раскрытия секрета британская разведка собрала группу блестящих и несколько эксцентричных ученых. Среди них был математик Алан Тьюринг. В конце 1943 г. группа сумела построить мощную машину (вместо электромеханических реле в ней применялись около 2000 электронных вакуумных ламп). Машину назвали «Колосс». Перехваченные сообщения кодировались, наносились на перфоленту и вводились в память машины. Лента вводилась посредством фотоэлектрического считывающего устройства со скоростью 5000 символов в секунду. Машина имела пять таких считывающих устройств. В процессе поиска соответствия (расшифровки) машина сопоставляла зашифрованное сообщение с уже известными кодами «Enigma» (по алгоритму работы машины Тьюринга). Работа группы до сих пор остается засекреченной. О роли Тьюринга в работе группы можно судить по следующему высказыванию члена этой группы математика И. Дж. Гуда: «Я не хочу сказать, что мы выиграли войну благодаря Тьюрингу, но беру на себя смелость сказать, что без него мы могли бы ее и проиграть». Машина «Колосс» была ламповая (крупный шаг вперед в развитии вычислительной техники) и специализированная (расшифровка секретных кодов)

Джон Моучли

Преспер Экерт

(род. в 1919)

Первой ЭВМ считается машина ЭНИАК (ENIAC, Electronic Numerial Integrator and Computer - электронный цифровой интегратор и вычислитель). Ее авторы, американские ученые Дж. Моучли и Преспер Экерт, работали над ней с 1943 по 1945 гг. Она предназначалась для расчета траекторий полетов снарядов, и представляла собой сложнейшее для середины XX в. инженерное сооружение длиной более 30 м, объемом 85 куб. м, массой 30 т. В ЭНИАКе были использованы 18 тыс. электронных ламп, 1500 реле, машина потребляла около 150 кВт. Далее возникла идея создания машины с программным обеспечением, хранимым в памяти машины, что изменило бы принципы организации вычислений и подготовило почву для появления современных языков программирования (ЭДВАК - Электронный Автоматический Вычислитель с дискретными переменными, EDVAC - Electronic Discret Variable Automatic Computer). Эта машина была создана в 1950 г. В более емкой внутренней памяти содержались и данные, и программа. Программы записывались электронным способом в специальных устройствах - линиях задержки. Самое главное было то, что в ЭДВАКе данные кодировались не в десятичной системе, а в двоичной (сократилось количество используемых электронных ламп). Дж. Моучли и П. Экерт после создания своей собственной компании задались целью создать универсальный компьютер для широкого коммерческого применения - ЮНИВАК (UNIVAC, Universal Automatic Computer - универсальный автоматический компьютер). Примерно за год до того, как первый
ЭНИАК ЮНИВАК вступил в эксплуатацию в Бюро переписи населения в США, партнеры оказались в тяжелом финансовом положении и вынуждены были продать свою компанию фирме «Ремингтон Рэнд». Однако ЮНИВАК не стал первым коммерческим компьютером. Им стала машина ЛЕО (LEO, Lyons" Bectronic Office), которая применялась в Англии для расчета зарплаты работникам чайных магазинов (фирма «Лайонс»), В 1973 г. федеральный суд США признал их авторские права на изобретение электронного цифрового компьютера недействительными, а идеи - заимствованными у Дж. Атанасоффа
Джон фон Нейман (1903-1957)

Работая в группе Дж. Мочли и П. Экерта, фон Нейман подготовил отчет - «Предварительный доклад о машине ЭДВАК», в котором обобщил планы работы над машиной. Это была первая работа по цифровым электронным компьютерам, с которой познакомились определенные круги научной общественности (по соображениям секретности работы в этой области не публиковались). С этого момента компьютер был признан объектом, представлявшим научный интерес. В своем докладе фон Нейман выделил и детально описал пять ключевых компонентов того, что ныне называют «архитектурой фон Неймана» современного компьютера.

В нашей стране независимо от фон Неймана были сформулированы более детальные и полные принципы построения электронных цифровых вычислительных машин (Сергей Алексеевич Лебедев)

Сергей Алексеевич Лебедев

В 1946 г. С. А. Лебедев становится директором института электротехники и организует в его составе свою лабораторию моделирования и регулирования. В 1948 г. С. А. Лебедев ориентировал свою лабораторию на создание МЭСМ (Малая электронная счетная машина). МЭСМ была вначале задумана как модель (первая буква в аббревиатуре МЭСМ) Большой электронной счетной машины (БЭСМ). Однако в процессе ее создания стала очевидной целесообразность превращения ее в малую ЭВМ. Из-за засекреченности работ, проводимых в области вычислительной техники, соответствующих публикаций в открытой печати не было.

Основы построения ЭВМ, разработанные С. А. Лебедевым независимо от Дж. фон Неймана, заключаются в следующем:

1) в состав ЭВМ должны входить устройства арифметики, памяти, ввода-вывода информации, управления;

2) программа вычислений кодируется и хранится в памяти подобно числам;

3) для кодирования чисел и команд следует использовать двоичную систему счисления;

4) вычисления должны осуществляться автоматически на основе хранимой в памяти программы и операций над командами;

5) помимо арифметических операций вводятся также логические - сравнения, условного и безусловного переходов, конъюнкция, дизъюнкция, отрицание;

6) память строится по иерархическому принципу;

7) для вычислений используются численные методы решения задач.

25 декабря 1951 г. МЭСМ была принята в эксплуатацию. Это была первая в СССР быстродействующая электронная цифровая машина.

В 1948 г. создается Институт точной механики и вычислительной техники (ИТМ и ВТ) АН СССР, которому правительство поручило разработку новых средств вычислительной техники и С. А. Лебедев приглашается заведовать лабораторией № 1 (1951 г). Когда БЭСМ была готова (1953 г.), она ничуть не уступала новейшим американским образцам.

С 1953 г. до конца своей жизни С. А. Лебедев был директором ИТМ и ВТ АН СССР, избран действительным членом АН СССР и возглавил работы по созданию нескольких поколений ЭВМ.

В начале 60-х гг. создается первая ЭВМ из серии больших электронных счетных машин (БЭСМ) - БХМ-1. При создании БЭСМ-1 были применены оригинальные научные и конструкторские решения. Благодаря этому она была тогда самой производительной машиной в Европе (8-10 тысяч операций в секунду) и одной из лучших в мире. Под руководством С. А. Лебедева были созданы и внедрены в производство еще две ламповые ЭВМ - БЭСМ-2 и М-20. В 60-х гг. были созданы полупроводниковые варианты М-20: М-220 и М-222, а также БЭСМ-ЗМ и БЭСМ-4.

При проектировании БЭСМ-6 впервые был применен метод предварительного имитационного моделирования (сдача в эксплуатацию была осуществлена в 1967 г.).

С. А. Лебедев одним из первых понял огромное значение совместной работы математиков и инженеров в создании вычислительных систем. По инициативе С. А. Лебедева все схемы БЭСМ-6 были записаны формулами булевой алгебры. Это открыло широкие возможности для автоматизации проектирования и подготовки монтажной и производственной документации

IBM Невозможно пропустить ключевой этап в развитии вычислительных средств и методов, связанных с деятельностью фирмы IBM. Исторически первые ЭВМ классической структуры и состава - Computer Installation System/360 (фирменное наименование - «Вычислительная установка системы 360», в дальнейшем известная как просто IBM/360) были выпущены в 1964 г., и с последующими модификациями (IBM/370, IBM/375) поставлялись вплоть до середины 80-х гг., когда под влиянием микроЭВМ (ПК) не начали постепенно сходить со сцены. ЭВМ данной серии послужили основой для разработки в СССР и странах-членах СЭВ так называемой Единой системы ЭВМ (ЕС ЭВМ), которые в течение нескольких десятилетий являлись основой отечественной компьютеризации.
ЕС 1045

Машины включали следующие компоненты:

Центральный процессор (32-разрядный) с двухадресной системой команд;

Главную (оперативную) память (от 128 Кбайт до 2 Мбайт);

Накопители на магнитных дисках (НМД, МД) со сменными пакетами дисков (например, IBM-2314 - 7,25 Мбайт, ШМ-2311 -29 Мбайт, IBM 3330 - 100 Мбайт), аналогичные (иногда совместимые) устройства известны и для других из вышеупомянутых серий;

Накопители на магнитных лентах (НМЛ, МЛ) катушечного типа, ширина ленты 0,5 дюйма, длина от 2400 футов (720 м) и менее (обычно 360 и 180 м), плотность записи от 256 байт на дюйм (обычная) и большая в 2-8 раз (повышенная). Соответственно рабочая емкость накопителя определялась размером катушки и плотностью записи и достигала 160 Мбайт на бобину МЛ;

Устройства печати - построчные печатающие устройства барабанного типа, с фиксированным (обычно 64 или 128 знаков) набором символов, включающих прописную латиницу и кириллицу (либо прописную и строчную латиницу) и стандартное множество служебных символов; вывод информации осуществлялся на бумажную ленту шириной 42 или 21 см со скоростью до 20 строк/с;

Терминальные устройства (видеотерминалы, а первоначально -электрические пишущие машинки), предназначенные для интерактивного взаимодействия с пользователем (IBM 3270, DEC VT-100 и пр.), подключаемые к системе для выполнения функций управления вычислительным процессом (консоль оператора - 1 -2 шт. на ЭВМ) и интерактивной отладки программ и обработки данных (терминал пользователя - от 4 до 64 шт. на ЭВМ).

Перечисленные стандартные наборы устройств ЭВМ 60-80-х гг. и их характеристики приведены здесь как историческая справка для читателя, который может их самостоятельно оценить, сравнив с современными и известными ему данными.

Фирмой IBM была предложена в качестве оболочки ЭВМ IBM/360 первая функционально полноценная ОС - OS/360. Разработка и внедрение ОС позволили разграничить функции операторов, администраторов, программистов, пользователей, а также существенно (а десятки и сотни раз) повысить производительность ЭВМ и степень загрузки технических средств. Версии OS/360/370/375 - MFT (мультипрограммирование с фиксированным количеством задач), MW (с переменным количеством задач), SVS (система с виртуальной памятью), SVM (система виртуальных машин) - последовательно сменяли друг друга и во многом определили современные представления о роли ОС

Билл Гейтс и

Пол Аллен

В 1974 г. Фирма Intel разработала первый универсальный 8-разрядный микропроцессор 8080 с 4500 транзисторами. Эдвард Роберте, молодой офицер ВВС США, инженер-электронщик, построил на базе процессора 8080 микрокомпьютер Альтаир, имевший огромный коммерческий успех, продававшийся по почте и широко использовавшийся для домашнего применения. В 1975 г. молодой программист Пол Аллен и студент Гарвардского университета Билл Гейтс реализовали для Альтаира язык Бейсик. Впоследствии они основали фирму Майкрософт (Microsoft).
Стивен Пол Джобс и Стивен Возняк

В 1976 г. студенты Стив Возняк и Стив Джобс, устроив мастерскую в гараже, реализовали компьютер Apple-1, положив начало корпорации Apple. 1983 г. - корпорация Apple Computers построила персональный компьютер Lisa - первый офисный компьютер, управляемый манипулятором «мышь».

В 2001 Стивен Возняк основал компанию «Wheels Of Zeus» для создания беспроводной GPS технологии.

2001 - Стив Джобс представил первый плеер iPod.

2006 - Apple представила первый ноутбук на базе процессоров Intel.

2008 - Apple представила самый тонкий ноутбук в мире, получивший название MacBook Air.

3. Классы вычислительных машин

Сферам применения и методам использования (а также размерам и вычислительной мощности).

Физическое представление обрабатываемой информации

Здесь выделяют аналоговые (непрерывного действия); цифровые (дискретного действия); гибридные (на отдельных этапах обработки используются различные способы физического представления данных).

АВМ - аналоговые вычислительные машины, или вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т. е. в виде непрерывного ряда значений какой-либо физической величины (чаше всего электрического напряжения):

ЦВМ - цифровые вычислительные машины, или вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, цифровой форме. В силу универсальности цифровой формы представления информации ЭВМ является более универсальным средством обработки данных.

ГВМ - гибридные вычислительные машины, или вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме. Они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Поколения ЭВМ

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения ее структуры, появления новых возможностей, расширения областей применения и характера использования (табл. 2.).


Таблица 2

Этапы развития компьютерных информационных технологий

Параметр Период, годы
50-е 60-е 70-е 80-е

Настоящее

Цель использования компьютера Научно-технические расчеты

Технические и экономи

Управление, предоставление информации

муникации, информа

ционное обслужив

Режим работы компьютера Однопрограммный Пакетная обработка Разделение времени Персональная работа Сетевая обработка
Интеграция данных Низкая Средняя Высокая Очень высокая
Расположение пользователя Машинный зал Отдельное помещение Терминальный зал Рабочий стол

вольное мобильное

Тип пользователя Инженеры-программисты

сиональные програм

Программисты Пользователи с общей компьютерной подготовкой

Мало обученные пользов

Тип диалога Работа за пультом компьютера Обмен перфоно-сителями и машино-граммами Интерактивный (через клавиатуру и экран) Интерактивный с жестким меню

активный экранный типа «вопрос - ответ»

К первому поколению обычно относят машины, созданные на рубеже 50-х гг. и базирующиеся на электронных лампах. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли значительное количество электроэнергии и выделяли много тепла (рис. 1.).

Набор команд был ограничен, схемы арифметико-логического устройства и устройства управления достаточно просты, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства. Быстродействие порядка 10-20 тыс. операций в секунду.

Программы для этих машин писались на языке конкретной машины. Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был весьма длительным по времени.

Несмотря на ограниченность возможностей эти машины позволили выполнить сложнейшие расчеты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.

Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета. Эти проблемы начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность ее использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить ее к требованиям, возникшим из опыта эксплуатации компьютеров.

В октябре 1945 года в США был создан первый компьютер ENIAC (Electronic Numerical Integrator And Calculator - электронный числовой интегратор и вычислитель).

Отечественные машины первого поколения: МЭСМ (малая электронная счетная машина), БЭСМ, Стрела, Урал, М-20.

Второе поколение компьютерной техники - машины, сконструированные в 1955-65 гг. Характеризуются использованием в них как электронных ламп, так и дискретных транзисторных логических элементов (рис. 2). Их оперативная память была построена на магнитных сердечниках. В это время стал расширяться диапазон применяемого оборудования ввода-вывода, появились высокопроизводительные устройства для работы с магнитными лентами (НМЛ), магнитные барабаны (НМБ) и первые магнитные диски (табл. 2.).

Эти машины характеризуются быстродействием до сотен тысяч операций в секунду, емкостью памяти - до нескольких десятков тысяч слов.

Появляются языки высокого уровня, средства которых допускают описание всей необходимой последовательности вычислительных действий в наглядном, легко воспринимаемом виде.

Программа, написанная на алгоритмическом языке, непонятна компьютеру, воспринимающему только язык своих собственных команд. Поэтому специальные программы, которые называются трансляторами, переводят программу с языка высокого уровня на машинный язык.

Появился широкий набор библиотечных программ для решения разнообразных задач, а также мониторные системы, управляющие режимом трансляции и исполнения программ, из которых в дальнейшем выросли современные операционные системы.

Операционная система - важнейшая часть программного обеспечения компьютера, предназначенная для автоматизации планирования и организации процесса обработки программ, ввода-вы вода и управления данными, распределения ресурсов, подготовки и отладки программ, других вспомогательных операций обслуживания.

Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х гг. наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

Наивысшим достижением отечественной вычислительной техники созданной коллективом С.А. Лебедева явилась разработка в 1966 году полупроводниковой ЭВМ БЭСМ-6 с производительностью 1 млн. операций в секунду.

Машины третьего поколения - это семейства машин с единой архитектурой, т. е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.

Машины третьего поколения появились в 60-е гг. Поскольку процесс создания компьютерной техники шел непрерывно, и в нем участвовало множество людей из разных стран, имеющих дело с решением различных проблем, трудно и бесполезно пытаться установить, когда «поколение» начиналось и заканчивалось. Возможно, наиболее важным критерием различия машин второго и третьего поколений является критерий, основанный на понятии архитектуры.

Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т. е. параллельного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения - семейства IBM-360, IBM-370, PDP-11, VAX, EC ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др.

Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Емкость оперативной памяти достигает нескольких сотен тысяч слов.

Четвертое поколение - это основной контингент современной компьютерной техники, разработанной после 70-х гг.

Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвертого поколения проектировались в расчете на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.

В аппаратурном отношении для них характерно широкое использование интегральных схем в качестве элементной базы, а также наличие быстродействующих запоминающих устройств с произвольной выборкой емкостью в десятки мегабайт (рис. 3, б).

С точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, использующие общую память и общее поле внешних устройств. Быстродействие составляет до нескольких десятков миллионов операций в секунду, емкость оперативной памяти порядка 1-512 Мбайт.

Для них характерны:

Применение персональных компьютеров (ПК);

Телекоммуникационная обработка данных;

Компьютерные сети;

Широкое применение систем управления базами данных;

Элементы интеллектуального поведения систем обработки данных и устройств.

К ЭВМ четвертого поколения относятся ПЭВМ “Электроника МС 0511” комплекта учебной вычислительной техники КУВТ УКНЦ, а также современные IBM - совместимые компьютеры, на которых мы работаем.

В соответствии с элементной базой и уровнем развития программных средств выделяют четыре реальных поколения ЭВМ, краткая характеристика которых приведена в таблице 3.

Таблица 3

Поколения ЭВМ

Параметры сравнения Поколения ЭВМ
первое второе третье четвертое
Период времени 1946 - 1959 1960 - 1969 1970 - 1979 с 1980 г.
Элементная база (для УУ, АЛУ) Электронные (или электрические) лампы Полупроводники (транзисторы) Интегральные схемы Большие интегральные схемы (БИС)
Основной тип ЭВМ Большие Малые (мини) Микро
Основные устройства ввода Пульт, перфокарточный, перфоленточный ввод Добавился алфавитно-цифровой дисплей, клавиатура Алфавитно-цифровой дисплей, клавиатура Цветной графический дисплей, сканер, клавиатура
Основные устройства вывода Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод Графопостроитель, принтер
Внешняя память Магнитные ленты, барабаны, перфоленты, перфокарты Добавился магнитный диск Перфоленты, магнитный диск Магнитные и оптические диски
Ключевые решения в ПО Универсальные языки программирования, трансляторы Пакетные операционные системы, оптимизирующие трансляторы Интерактивные операционные системы, структурированные языки программирования Дружественность ПО, сетевые операционные системы
Режим работы ЭВМ Однопрограммный Пакетный Разделения времени Персональная работа и сетевая обработка данных
Цель использования ЭВМ Научно-технические расчеты Технические и экономические расчеты Управление и экономические расчеты Телекоммуникации, информационное обслуживание

Таблица 4

Основные характеристики отечественных ЭВМ второго поколения

Параметр Первая очередь
Раздан-2 БЭСМ-4 М-220 Урал-11 Минск-22 Урал-16
Адресность 2 3 3 1 2 1
Форма представления данных С плавающей запятой С плавающей запятой С плавающей запятой

рованной запятой, символьная

рованной запятой, символьная

С плавающей и фикси

рованной запятой, символьная

Длина машинного слова(дв. разр.) 36 45 45 24 37 48
Быстродействие (оп./с) 5 тыс. 20 тыс. 20 тыс. 14-15 тыс. 5 тыс. 100 тыс
ОЗУ, тип, емкость (слов)

товый сердечник 2048

товый сердечник 8192

товый сердечник 4096-16 384

товый сердечник 4096-16 384

товый сердечник

товый сердечник 8192-65 536

ВЗУ, тип, емкость (слов) НМЛ 120 тыс. НМЛ 16 млн НМЛ 8 млн НМЛ до 5 млн НМЛ 12 млн НМБ130тыс.

В компьютерах пятого поколения предположительно должен произойти качественный переход от обработки данных к обработке знаний.

Архитектура компьютеров пятого поколения будет содержать два основных блока. Один из них - это традиционный компьютер, однако лишенный связи с пользователем. Эту связь осуществляет интеллектуальный интерфейс. Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей.

Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:

1. Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.

2. Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.


До XVII в. деятельность общества в целом и каждого человека в отдельности была направлена на овладение веществом, т. е. есть познание свойств вещества и изготовление сначала примитивных, а потом все более сложных орудий труда, вплоть до механизмов и машин, позволяющих изготовлять потребительские ценности.

Затем в процессе становления индустриального общества на первый план вышла проблема овладения энергией - сначала тепловой, затем электрической, наконец, атомной.

В конце XX в. человечество вступило в новую стадию развития - стадию построения информационного общества.

В конце 60-х гг. Д. Белл констатировал превращение индустриального общества в информационное.

Важнейшая задача общества - восстановить каналы коммуникации в новых экономических и технологических условиях для обеспечения четкого взаимодействия всех направлений экономического, научного и социального развития как отдельных стран, так и в глобальном масштабе.

Современный компьютер - это универсальное, многофункциональное, электронное автоматическое устройство для работы с информацией.

В 1642 г., когда Паскалю было 19 лет, была изготовлена первая действующая модель суммирующей машины.

В 1673 г. Лейбниц изобрёл механическое устройство для расчетов (механического калькулятора).

1804 г. инженер Жозеф-Мари Жаккар построил полностью автоматизированный станок (станок Жаккара), способный воспроизводить сложнейшие узоры. Работа станка программировалась с помощью колоды перфокарт, каждая из которых управляла одним ходом челнока.

В 1822 г. Ч. Беббиджем была построена разностная машина (пробная модель), способная рассчитывать и печатать большие математические таблицы. В последующем он пришел к идее создания более мощной - аналитической машины. Она не просто должна была решать математические задачи определенного типа, а выполнять разнообразные вычислительные операции в соответствии с инструкциями, задаваемыми оператором.

Графиня Огаста Ада Лавлейс совместно с Ч. Бэббиджем работала над созданием программ для его счетных машин. Ее работы в этой области были опубликованы в 1843 г.

Дж. Буль по праву считается отцом математической логики. Его именем назван раздел математической логики - булева алгебра. Дж. Буль изобрел своеобразную алгебру - систему обозначений и правил, применяемую к всевозможным объектам, от чисел и букв до предложений (1854 г).

Модели арифмометров, первая из которых была сконструирована не позднее 1876 г. Арифмометр Чебышева для того времени был одной из самых оригинальных вычислительных машин. В своих конструкциях Чебышев предложил принцип непрерывной передачи десятков и автоматический переход каретки с разряда на разряд при умножении.

Алексей Николаевич Крылов 1904 г. предложил конструкцию машины для интегрирования обыкновенных дифференциальных уравнений. В 1912 г. такая машина была построена.

И другие.

Электронная вычислительная машина (ЭВМ), компьютер - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

ЭВМ можно классифицировать по ряду признаков, в частности:

Физическому представлению обрабатываемой информации;

Поколениям (этапам создания и элементной базе).

Его стали называть арифметико-логическим. Оно стало основным устройством современных компьютеров. Таким образом, два гения XVII века, установили первые вехи в истории развития цифровой вычислительной техники. Заслуги В. Лейбница, однако, не ограничиваются созданием "арифметического прибора". Начиная со студенческих лет и до конца жизни он занимался исследованием свойств двоичной системы...

...) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники. Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений - за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого...





























































































































































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока:

  1. познакомить с историей развития вычислительной техники, с устройствами, являющимися предшественниками компьютеров и их изобретателями
  2. дать представление о связи развития ЭВМ с развитием человеческого общества,
  3. познакомить с основными особенностями ЭВМ разных поколений.
  4. Развитие познавательного интереса, умение использовать дополнительную литературу

Тип урока: изучение нового материала

Вид: урок-лекция

Программно-дидактическое обеспечение: ПК, слайды презентации с изображением основных устройств, портретов изобретателей и ученых.

План урока:

  1. Организационный момент
  2. Актуализация новых знаний
  3. Предыстория компьютеров
  4. Поколения ЭВМ (компьютеров)
  5. Будущее компьютеров
  6. Закрепление новых знаний
  7. Подведение итогов урока
  8. Домашнее задание

1. Организационный момент

Задача этапа : Подготовить учащихся к работе на уроке. (Проверить готовность класса к уроку, наличие школьных необходимых принадлежностей, посещаемость)

2. Актуализация новых знаний

Задача этапа : Подготовка учащихся к активному усвоению новых знаний, обеспечить мотивацию и принятие учащимися цели учебно – познавательной деятельности. Постановка целей урока.

Здравствуйте! Как вы думаете, какие технические изобретения особенно изменили способы труда человека?

(Ученики высказывают свои мнения по данному вопросу, по необходимости учитель их корректирует)

- Вы правы, действительно, основным техническим устройством, повлиявшим на труд человека, является изобретение компьютеров - электронно – вычислительных машин. Сегодня на уроке, мы с вами узнаем, какие вычислительные устройства предшествовали появлению компьютеров, как изменялись сами компьютеры, последовательность становления компьютера, когда машина предназначенная просто для счёта стала сложным техническим устройством. Тема нашего урока: «История вычислительной техники. Поколения компьютеров». Цель нашего урока: познакомиться с историей развития вычислительной техники, с устройствами, являющимися предшественниками компьютеров и их изобретателями познакомиться с основными особенностями ЭВМ разных поколений.

На уроке мы будем работать с помощью мультимедийной презентации, состоящей из 4-х разделов «Предыстория компьютеров», «Поколения компьютеров», «Галерея учёных», «Компьютерный словарь». В каждом разделе есть подраздел «Проверь себя» - это тест, в котором вы сразу узнаете результат.

3. Предыстория компьютеров

Обратить внимание учеников, что ЭВМ – это электронно-вычислительная машина, другое название «компьютер» или «computer» произошло от английского глагола «compute» – вычислять, поэтому слово «компьютер» можно перевести как «вычислитель». То есть и в слове ЭВМ и в слове компьютер главный смысл это вычисления. Хотя мы с вами хорошо знаем, что современные ЭВМ позволяют не только вычислять, но и создавать и обрабатывать тексты, рисунки, видео, звук. Заглянем в историю…

(параллельно оформляем в тетради таблицу «Предыстория компьютеров»)

«Предыстория компьютеров»

Древний человек счетом овладел раньше, чем письменностью. В качестве первого помощника в счете человек избрал свои пальцы. Именно наличие десяти пальцев легло в основу десятичной системы счисления. В разных странах говорят и пишут на разных языках, а считают одинаково. В 5-ом веке до н.э. греки и египтяне использовали для счета – АБАК – устройство, похожее на русские счеты.

Абак – греческое слово и переводится как счетная доска. Идея его устройства заключается в наличии специального вычислительного поля, где по определенным правилам перемещают счетные элементы. Действительно первоначально абак представлял собой доску, покрытую пылью или песком. На ней можно было чертить линии и перекладывать камешки. В Древней Греции абак служил преимущественно для выполнения денежных расчетов. В левой части подсчитывались крупные денежные единицы, а в правой – мелочь. Счет велся в двоично-пятеричной системе счислении. На такой доске было легко складывать и вычитать, добавляя или убирая камешки и перенося их из разряда в разряд.

Придя в Древний Рим абак, изменился внешне. Римляне стали изготавливать его из бронзы, слоновой кости или цветного стекла. На доске присутствовали два ряда прорезей, по которым можно было передвигать косточки. Абак превратился в настоящий счетный прибор, позволяющий представлять даже дроби, и был значительно удобнее греческого. Римляне называли это устройство calculare – «камешки». Отсюда произошел латинский глагол calculare – «вычислять», а от него – русское слово «калькулятор».

После падения Римской империи произошел упадок науки и культуры и абак был закрыт на некоторое время. Возродился он и распространился по Европе только в X веке. Абаком пользовались купцы, менялы, ремесленники. Даже спустя шесть столетий абак оставался важнейшим инструментом для выполнения вычислений.

Естественно, что в течение такого большого промежутка времени абак менял свой внешний вид и в XLL-XLLLвв.он приобрел форму так называемого счета на линиях, так и между ними. Такая форма счета в некоторых европейских странах сохранялась до конца XVLLLв. и лишь затем окончательно уступила место вычислениям на бумаге.

В Китае абак был известен с LV века до нашей эры. На специальной доске выкладывались счетные палочки. Постепенно их сменили разноцветные фишки, а в V веке появились китайские счеты – суан-пан. Они представляли собой раму с двумя рядами нанизанных на прутики косточек. На каждом прутике их было по семь. Из Китая суан-пан пришел в Японию. Произошло это в XVL веке и устройство получило название «соробан».

В Росси счеты появились в то же время, что и в Японии. Но русские счеты были изобретены самостоятельно, что доказывают следующие факторы. Во-первых, русские счеты очень сильно отличаются от китайских. Во-вторых, это изобретение имеет свою историю.

В России был распространен «счет костьми». Он был близок европейскому счету на линиях, но писцы использовали вместо жетонов плодовые косточки. В XVL возник дощаной счет, первый вариант русских счетов. Такие счеты хранятся сейчас в Историческом музе в Москве.

Счеты в России использовались почти 300 лет и сменили их только дешевые карманные калькуляторы.

Первое в мире автоматическое устройство, которое могло выполнять сложение, было создано на базе механических часов, и разработал его в 1623 году Вильгельм Шикард, профессор кафедры восточных языков в одном из университетов Германии. Но неоценимый вклад в развитие устройств помогающих выполнять вычисления, безусловно внесли Блез Паскаль, Годфрид Лейбниц и Чарльз Беббидж.

В 1642 году один из крупнейших ученых в истории человечества – французский математик, физик, философ и богослов Блез Паскаль изобрел и изготовил механическое устройство для складывания и вычитания чисел – АРИФМОМЕТР. ? Как вы думаете, из какого материала был сделан первый в истории арифмометр? (дерево).

Главная идея конструкции будущей машины была сформирована – автоматический перенос разряда. «Каждое колесо… некоторого разряда, совершая движение на десять арифметических цифр, заставляет двигаться следующее только на одну цифру» - эта формула изобретения утверждала приоритет Блеза Паскаля в изобретении и закрепила за ним право производить и продавать машины.

Машина Паскаля осуществляла сложение чисел на специальных дисках - колесиках. Десятичные цифры пятизначного числа задавались поворотами дисков, на которые были нанесены цифровые деления. Результат читался в окошечках. Диски имели один удлиненный зуб, чтобы можно было учесть перенос в следующий разряд.

Исходные числа задавались поворотами наборных колес, вращение ручки приводило в движение различные шестерни и валики, в итоге специальные колеса с цифрами показывали результат выполнения сложения или вычитания.

Паскаль был одним из величайших гениев человечества. Он был математиком, физиком, механиком, изобретателем, писателем. Его имя носят теоремы математики и законы физики. В физике есть единица измерения давления Паскаль. В информатике его имя носит один из самых популярных языков программирования.

В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц изобрел и изготовил арифмометр, который мог не только складывать и вычитать числа, но и умножать и делить. Скудость, примитивность первых вычислительных аппаратов не помешала Паскалю и Лейбницу высказать ряд интересных идей о роли вычислительной техники в будущем. Лейбниц писал о машинах, которые будут работать не только с числами, но и сос словами, понятиями, формулами, могли выполнять логические операции. Эта идея большинству современников Лейбница казалась абсурдом. В 18 веке взгляды Лейбница были осмеяны великим английским сатириком Дж.Свифтом, автором известного романа «Путешествия Гулливера».

Лишь в 20-ом веке стала понятна значительность идей Паскаля и Лейбница.

Наряду с устройствами для вычислений развивались и механизмы для АВТОМАТИЧЕСКОЙ РАБОТЫ ПО ЗАДАННОЙ ПРОГРАММЕ (музыкальные автоматы, часы с боем, ткацкие станки Жаккарда).

В начале 19-го века английский математик Чарльз Беббидж, занимавшийся составлением таблиц для навигации, разработал ПРОЕКТ вычислительной «аналитической» машины, в основе которого лежал ПРИНЦИП ПРОГРАММНОГО УПРАВЛЕНИЯ (ППУ). Новаторская мысль Беббиджа была подхвачена и развита его ученицей Адой Лавлейс, дочерью поэта Джорджа Байрона – которая стала первой программисткой в мире. Однако практическая реализация проекта Беббиджа была невозможной из-за недостаточного развития промышленности и техники.

Основные элементы машины Беббиджа, присущие современному компьютеру:

  1. Склад – устройство, где хранятся исходные числа и промежуточные результаты. В современно компьютере это память.
  2. Фабрика – арифметическое устройство, в котором осуществляются операции над числами, взятые из Склада. В современном компьютере это Процессор.
  3. Блоки ввода исходных данных – устройство ввода.
  4. Печать результатов – устройство вывода.

Архитектура машины практически соответствует архитектуре современных ЭВМ, а команды, которые выполняла аналитическая машина, в основном включают все команды процессора.

Интересным историческим фактом является то, что первую программу для аналитической машины написал Ада Августа Лавлейс – дочь великого английского поэта Джорджа Байрона. Именно Беббидж заразил ее идеей создания вычислительной машины.

Идея программирования механических устройств с помощь перфокарты впервые была реализована в 1804 году в ткацком станке. Впервые применили их конструкторы ткацких станков. Преуспел в этом дел лондонский ткач Жозеф Мари Жаккард. В 1801 году он создал автоматический ткацкий станок, управляемый перфокартами.

Нить поднималась или опускалась при каждом ходе челнока в зависимости от того, есть отверстие или нет. Поперечная нить могла обходить каждую продольную той Ии иной стороны в зависимости от программы на перфокарте, создавая тем самым затейливый узор из переплетенных нитей. Такое плетение получило название «жаккард» и считается одним из самых сложных и запутанных плетений. Такой ткацкий станок, работающий по программе, был первым массовым промышленным устройством и считается одним из самых совершенных машин, когда-либо созданных человеком.

Идея записи программы на перфокарте пришла в голову и первой программистке Аде Августе Лавлейс. Именно она предложила использовать перфорированные карты в аналитической машине Беббиджа. В частности, в одном из писем она писала: «Аналитическая машина точно так же плетет алгебраические узоры, как ткацкий станок воспроизводит цвета и листья».

Герман Холлерит также использовал в своей машине перфокарты для записи и обработки информации. Перфокарты использовались и в компьютерах первого поколения.

До 40-х годов двадцатого века вычислительная техника представлялась арифмометрами, которые из механических стали электрическими, где электромагнитные реле затрачивали на умножение чисел несколько секунд, которые работали точно по тем же принципам, как и арифмометры Паскаля и Лейбница. Кроме того, они были очень ненадежны, часто ломались. Интересно, что однажды причиной поломки электрического арифмометра оказался мотылек, застрявший в реле, по-английски «мотылек, жук» – bug, отсюда появилось понятие «жучок» как неполадка в ЭВМ.

Герман Холлерит родился 29 февраля 1860 года в американском городе Буффало в семье немецких эмигрантов. Герману легко давались математика и естественные науки, и в 15 лет он поступил в Горную школу при Колумбийском университете. На способного юношу обратил внимание профессор того же университета и пригласил его после окончания школы в возглавляемое им национальное бюро по переписи населения. Перепись населения производилась каждые десять лет. Население постоянно росло, и ее численность в США к тому времени составляло около 50 миллионов человек. Заполнить на каждого человека карточку вручную, а затем подсчитать и обработать результаты, было практически невозможно. Этот процесс затянулся на несколько лет, почти до следующей переписи. Необходимо было найти выход из этой ситуации. Герману Холлериту идею механизировать этот процесс подсказал доктор Джон Биллингс, возглавлявший департамент сводных данных. Он предложил использовать для записи информации перфокарты. Свою машину Холлерит назвал табулятором и в 1887 году он был опробован в Балтиморе. Результаты оказались положительными, и эксперимент повторили в Сент-Луисе. Выигрыш во времени был почти десятикратным. Правительство США сразу же заключило с Холлеритом контракт на поставку табуляторов, и уже в 1890 году перепись населения прошла с использованием машин. Обработка результатов заняла менее двух лет и сэкономила 5 миллионов долларов. Система Холлерита не только обеспечивала высокую скорость, но и позволяла сравнить статистические данные по самым разным параметрам. Холлерит разработал удобный клавишный перфоратор, позволяющий пробивать около 100 отверстий в минуту одновременно на нескольких картах, автоматизировал процедур подачи и сортировки перфокарт. Сортировку осуществляло устройство в виде набора ящиков с крышками. Перфокарты продвигались по своеобразному конвейеру. С одной стороны карты находились считывающие штыри на пружинках, с другой – резервуар с ртутью. Когда штырь попадал в отверстие на перфокарте, то благодаря ртути, находящейся на другой стороне, замыкал электрическую цепь. Крышка соответствующего ящика открывалась и туда попадала перфокарта. Табулятор использовали для переписи населении в нескольких странах.

В 1896 году герма Холлерит сновал компанию Tabulating Machine Company (TMC) и его машины применялись повсюду – и на крупных промышленных предприятиях и в обычных фирмах. И в 1900 году табулятор использовался для переписи населения. переименовывает фирму в IBM (International Business Machines).

4. Поколения ЭВМ (компьютеров)

(параллельно оформляем записи в тетради и таблицу «Поколения ЭВМ (компьютеров)»)

ПОКОЛЕНИЯ ЭВМ
период Элементная база Быстро-действие (оп/сек.) Носители информации программы применение Примеры ЭВМ
I
II
III
IV
V

I поколение ЭВМ: В 30-х годах 20-го века в развитии физики произошел прорыв, коренной переворот. В вычислительных машинах стали использоваться уже не колеса, валики и реле, а вакуумные электронные лампы. Переход от электромеханических элементов к электронным сразу увеличил быстродействие машин в сотни раз. Первая действующая ЭВМ была построена в США в 1945 году, в университете штата Пенсильвания учеными Эккертом и Моучли и называлась ЭНИАК. Эта машина была построена по заказу министерства обороны США для средств ПВО, для автоматизации управления. Чтобы правильно рассчитать траекторию и скорость движения снаряда для поражения воздушной цели, надо было решить систему из 6-ти дифференциальных уравнений. Эту задачу и должна была решать первая ЭВМ. Первая ЭВМ занимала два этажа одного здания, весила 30 тонн и состояла из десятков тысяч электронных ламп, которые соединялись проводами, общая протяженность которых составляла 10 тысяч км. Когда ЭВМ ЭНИАК работала, электричество в городке отключалась, так много электричества потреблялось этой машиной, электронные лампы быстро перегревались и выходили из строя. Целая группа студентов занималась только тем, что непрерывно искала и заменяла перегоревшие лампы.

В СССР основоположником вычислительной техники стал Сергей Алексеевич Лебедев, создавший МЭСМ (малая счетная машина) 1951 год (Киев) и БЭСМ (быстродействующая ЭСМ) – 1952 г., Москва.

II поколение: В 1948 году американским ученым Уолтером Брайттеном был изобретен ТРАНЗИСТОР, полупроводниковый прибор, который заменил радиолампы. Транзистор был намного меньше радиолампы, был более надежным и потреблял намного меньше электричества, он один заменял 40 электронных ламп! Вычислительные машины стали меньше в размерах и значительно дешевле, их быстродействие достигло нескольких сот операций в секунду. Теперь ЭВМ были размером с холодильник, их могли приобрести и использовать научные и технические институты. В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня БЭСМ-6.

III поколение: Вторая половина 20-го века характеризуется бурным развитием науки и техники, особенно физики полупроводников и с 1964 года транзисторы стали размещать на микросхемах, выполненных на поверхностях кристаллов. Это позволило преодолеть миллионный барьер в быстродействии.

IV поколение: Начиная с 1980 года ученые научились на одном кристалле размещать несколько интегральных микросхем, развитие микроэлектроники привело к созданию микропроцессоров. Кристалл ИС меньше и тоньше контактной линзы. Быстродействие современных ЭВМ исчисляется сотнями миллионов операций в секунду.

В 1977 году появился первый ПК (персональный компьютер) фирмы Apple Macintosh. С 1981 года лидером в производстве ПК стала фирма IBM (International Business Machine), эта фирма работала на рынке США еще с 19-го века и выпускала различные устройства для офисов – счеты, арифмометры ручки и т.д. и зарекомендовала себя как надежная фирма, которой доверяло большинство деловых людей в США. Но не только поэтому ПК IBM были намного популярнее, чем ПК Apple Macintosh. ПК Apple Macintosh представляли собой “черный ящик” для пользователя – он не разобрать модернизировать ПК, присоединять к ПК новые устройства, а ПК IBM были открыты для пользователя и тем самым позволяли собирать ПК как детский конструктор, поэтому большинство пользователей выбрали ПК IBM. Хотя мы с вами при слове ЭВМ представляем именно ПК, но существуют задачи, которые даже современные ПК решить не могут, с которыми могут справиться только суперЭВМ, быстродействие которых исчисляется миллиардами операций в секунду.

Научная школа Лебедева по своим результатам успешно соперничала с ведущей фирмой США IBM . Среди ученых мира, современников Лебедева, нет человека, который подобно ему обладал бы столь мощным творческим потенциалом, чтобы охватить своей научной деятельностью период от создания первых ламповых ЭВМ до сверхбыстродействующей суперЭВМ. Когда американский ученый Норберт Винер, которого называют «первый киберпророк», в 1960 году приезжал в СССР, он отметил « Они совсем немного отстают от нас в аппаратуре, зато далеко впереди нас в ТЕОРИИ автоматизации». К сожалению, в 60-х годах наука кибернетика подвергалась гонениям, как «буржуазная лженаука», ученых-кибернетиков сажали в тюрьмы, из-за чего советская электроника стала заметно отставать от зарубежной. Хотя создавать новые ЭВМ становилось невозможным, запретить мыслить ученым никто не мог. Поэтому до сих пор наши российские ученые опережают мировую научную мысль в области теории автоматизации.

Для разработки программ для ЭВМ создавались различные языки программирования (алгоритмические языки). Фортран FORTRAN – FORmula TRANslated – первый язык, создан в 1956 году Дж. Бэкусом. В 1961 году появился Бейсик BASIC (Beginners All-purpose Simbolic Instartion Code –многоцелевой язык символических инструкций для начинающих) Т.Куртц, дж. Кемени.В 1971 году профессор Цюрихского университета Николас Вирт создал язык Паскаль Pascal, который назвал в честь ученого Блеза Паскаля. Создавались и другие языки: Ада, Алгол, Кобол, Си, Пролог, Фред, Лого, Лисп и др. Но до сих пор самым популярным языком программирования является Паскаль, многие более поздние языки взяли из Паскаля основные команды и принципы построения программы, например язык Си, Си+ и система программирования Delphi, даже Бейсик, изменившись позаимствовал из Паскаля его структурированность и универсальность. Мы с вами в 11-ом классе будем изучать язык Паскаль и научимся создавать программы для решения задач с формулами, для обработки текста, научимся рисовать и создавать движущиеся рисунки.

Суперкомпьютеры

5. Будущее компьютеров

  • Преимущества искусственного интеллекта (ИИ):
  • Молекулярные компьютеры
  • Биокомпьютеры
  • Оптические компьютеры
  • Квантовые компьютеры

6. Закрепление новых знаний

Закрепление нового материала возможно с помощью теста в мультимедийной презентации к уроку: раздел «Проверь себя» в каждой части презентации: «Предыстория компьютеров», «Поколения ЭВМ», «Галерея учёных».

Проверка знаний по данной теме возможно с помощью тестов «История вычислительной техники» (Приложение 1 ) в 4-х вариантах и тест об учёных «Информатика в лицах» (Приложение 2 )

7. Подведение итогов урока

Проверка заполненных таблиц (Приложение 3 )

8. Домашнее задание

  • лекция в тетради по презентации, таблицы «Предыстория компьютеров», «Поколения ЭВМ»
  • подготовить сообщение про 5-ое поколение ЭВМ (будущее компьютеров)

ОСНОВЫ ПК

Люди всегда испытывали потребность в счете. Для этого они использовали пальцы рук, камешки, которые складывали в ку­чки или располагали в ряд. Число предметов фиксировалось с по­мощью черточек, которые проводились по земле, с помощью за­рубок на палках и узелков, которые завязывались на веревке.

С увеличением количества подлежащих подсчету предметов, развитием наук и ремесел появилась необходимость в проведении простейших вычислений. Самым древним инструментом, известным в различных странах, являются счеты (в Древнем Риме они называ­лись calculi). Они позволяют производить простейшие вычисления над большими числами. Счеты оказались настолько удачным инст­рументом, что дожили с древних времен почти до наших дней.

Никто не может назвать точное время и место появления сче­тов. Историки сходятся во мнении, что их возраст составляет не­сколько тысяч лет, а их родиной могут быть и Древний Китай, и Древний Египет, и Древняя Греция.

1.1. КРАТКАЯ ИСТОРИЯ

РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

С развитием точных наук появилась настоятельная необходи­мость в проведении большого количества точных вычислений. В 1642 г. французский математик Блез Паскаль сконструировал первую механическую счетную машину, известную как суммиру­ющая машина Паскаля (рис. 1.1). Эта машина представляла собой комбинацию взаимосвязанных колесиков и приводов. На колеси­ках были нанесены цифры от 0 до 9. Когда первое колесико (еди­ницы) делало полный оборот, в действие автоматически приво­дилось второе колесико (десятки); когда и оно достигало цифры 9, начинало вращаться третье колесико и т.д. Машина Паскаля могла только складывать и вычитать.

В 1694 г. немецкий математик Готфрид Вильгельм фон Лейбниц сконструировал более совершенную счетную машину (рис. 1.2). Он был убежден, что его изобретение найдет широкое применение не только в науке, но и в быту. В от­личие от машины Паскаля Лейб­ниц использовал цилиндры, а не колесики и приводы. На цилинд­ры были нанесены цифры. Каждый цилиндр имел девять рядов высту­пов или зубцов. При этом первый ряд содержал 1 выступ, второй - 2 и так вплоть до девятого ряда, который содержал 9 выступов. Ци­линдры были подвижными и при­водились в определенное положе­ние оператором. Конструкция ма­шины Лейбница была более совер­шенной: она была способна выпол­нять не только сложение и вычи­тание, но и умножение, деление и даже извлечение квадратного корня.

Интересно, что потомки этой конструкции дожили до 70-х годов XX в. в форме механических каль­куляторов (арифмометр типа «Фе­ликс») и широко использовались для различных расчетов (рис. 1.3). Однако уже в конце XIX в. с изоб­ретением электромагнитного реле появились первые электромехани­ческие счетные устройства. В 1887 г. Герман Голлерит (США) изобрел электромеханический табулятор с вводом чисел с помощью перфо­карт. На идею использовать перфо­карты его натолкнула пробивка компостером проездных билетов на железнодорожном транспорте. Раз­работанная им 80-колонная перфо­карта не претерпела существенных изменений и в качестве носителя информации использовалась в пер­вых трех поколениях компьютеров. Табуляторы Голлерита использова­лись во время 1-й переписи насе­ления в России в 1897 г. Сам изобретатель тогда специально приезжал в Санкт-Петербург. С этого времени электромеханические табуляторы и другие подобные им устройства стали широко применяться в бухгалтерском учете.

В начале XIX в. Чарльз Бэббидж сформулировал основные по­ложения, которые должны лежать в основе конструкции вычис­лительной машины принципиально нового типа.

В такой машине, по его мнению, должны быть «склад» для хранения цифровой информации, специальное устройство, осу­ществляющее операции над числами, взятыми со «склада». Бэб­бидж называл такое устройство «мельницей». Другое устройство служит для управления последовательностью выполнения опера­ций, передачей чисел со «склада» на «мельницу» и обратно, на­конец, в машине должно быть устройство для ввода исходных дан­ных и вывода результатов вычислений. Эта машина так никогда и не была построена - существовали лишь ее модели (рис. 1.4), но принципы, положенные в ее основу, были позже реализованы в цифровых ЭВМ.

Научные идеи Бэббиджа увлекли дочь известного английско­го поэта лорда Байрона - графиню Аду Августу Лавлейс. Она заложила первые фундаментальные идеи о взаимодействии раз­личных блоков вычислительной машины и последовательности решения на ней задач. Поэтому Аду Лавлейс по праву считают первым в мире программистом. Многими понятиями, введенны­ми Адой Лавлейс в описания первых в мире программ, широко пользуются современные программисты.

Рис. 1.1. Суммирующая машина Паскаля

Рис. 1.2. Счетная машина Лейбница

Рис. 1.3. Арифмометр «Феликс»

Рис. 1.4. Машина Бэббиджа

Началом новой эры развития вычислительной техники на базе электромеханических реле стал 1934 г. Американская фирма IBM (International Buisness Machins) начала выпуск алфавитно-циф­ровых табуляторов, способных выполнять операции умножения. В середине 30-х годов XX в. на основе табуляторов создается про­образ первой локальной вычислительной сети. В Питсбурге (США) в универмаге была установлена система, состоящая из 250 терми­налов, соединенных телефонными линиями с 20 табуляторами и 15 пишущими машинками для расчетов с покупателями. В 1934 - 1936 гг. немецкий инженер Конрад Цузе пришел к идее создания универсальной вычислительной машины с программным управлением и хранением информации в запоминающем устройстве. Он сконструировал машину «Z-3» - это была первая программно-управляемая вычислительная машина – прообраз современных ЭВМ (рис. 1.5).

Рис. 1.5. Вычислительная машина Цузе

Это была релейная машина, использующая двоичную систему счисления, имеющая память на 64 числа с плавающей запятой. В арифметическом блоке пользовалась параллельная арифметика. Команда включала операционную и ад­ресную части. Ввод данных осуществлялся с помощью десятичной клавиатуры, был предусмотрен цифровой вывод, а также автоматическое преобразование десятич­ных чисел в двоичные и обратно. Ско­рость выполнения операции сложения - три операции в секунду.

В начале 40-х годов XX в. в лаборато­риях IBM совместно с учеными Гарвар­дского университета была начата разработка одной из самых мощных электромеханических вычислительных машин. Она получила название MARK-1, содержала 760 тыс. компонентов и весила 5 т (рис. 1.6).

Рис. 1.6. Вычислительная машина MARK -1

Последним наиболее крупным проектом в сфере релейной вычислительной техники (ВТ) следует считать построенную в 1957 г. в СССР РВМ-1, которая по целому ряду задач была вполне конкурентоспособна тогдашним ЭВМ. Тем не менее с появлением электронной лампы дни электромеханических устройств остава­лись сочтены. Электронные компоненты обладали большим пре­восходством в быстродействии и надежности, что и определило дальнейшую судьбу электромеханических вычислительных машин. Наступила эра электронных вычислительных машин.

Переход к следующему этапу развития средств вычислитель­ной техники и технологии программирования был бы невозмо­жен без основополагающих научных исследований в области пе­редачи и обработки информации. Развитие теории информации связано прежде всего с именем Клода Шеннона. Отцом киберне­тики по праву считается Норберт Винер, а создателем теории ав­томатов является Генрих фон Нейман.

Концепция кибернетики родилась из синтеза многих научных направлений: во-первых, как общий подход к описанию и ана­лизу действий живых организмов и вычислительных машин или иных автоматов; во-вторых, из аналогий между поведением со­обществ живых организмов и человеческого общества и возмож­ностью их описания с помощью общей теории управления; и, наконец, из синтеза теории передачи информации и статисти­ческой физики, который привел к важнейшему открытию, связывающему количество информации и отрицательную энтропию в системе. Сам термин «кибернетика» происходит от греческого слова, означающего «кормчий», он впервые был применен Н.Ви­нером в современном смысле в 1947 г. Книга Н.Винера, в кото­рой он сформулировал основные принципы кибернетики, на­зывается «Кибернетика или управление и связь в животном и машине».

Клод Шеннон - американский инженер и математик, чело­век, которого называют отцом современной теорий информации. Он доказал, что работу переключателей и реле в электрических схемах можно представить посредством алгебры, изобретенной в середине XIX в. английским математиком Джорджем Булем. С тех пор булева алгебра стала основой для анализа логической струк­туры систем любого уровня сложности.

Шеннон доказал, что всякий зашумленный канал связи харак­теризуется предельной скоростью передачи информации, назы­ваемой пределом Шеннона. При скоростях передачи выше этого предела неизбежны ошибки в передаваемой информации. Однако с помощью соответствующих методов кодирования информации можно получить сколь угодно малую вероятность ошибки при любой зашумленности канала. Его исследования явились фунда­ментом для разработки систем передачи информации по линиям связи.

В 1946 г. блестящий американский математик венгерского про­исхождения Генрих фон Нейман сформулировал основную кон­цепцию хранения команд компьютера в его собственной внутрен­ней памяти, что послужило огромным толчком к развитию элек­тронно-вычислительной техники.

Во время Второй мировой войны он служил консультантом в атомном центре в Лос-Аламосе, где занимался расчетами взрыв­ной детонации ядерной бомбы и участвовал в разработке водо­родной бомбы.

Нейману принадлежат работы, связанные с логической орга­низацией компьютеров, проблемами функционирования машин­ной памяти, самовоспроизводящихся систем и др. Он принимал участие в создании первой электронной вычислительной машины ENIAC, предложенная им архитектура компьютера была положе­на в основу всех последующих моделей и до сих пор так и называ­ется - «фон-неймановской».

I поколение компьютеров . В 1946 г. в США были закончены работы по созданию ENIAC - первой вычис­лительной машины на электрон­ных компонентах (рис. 1.7).

Рис. 1.7. Первая ЭВМ ENIAC

Новая машина имела впечатляющие па­раметры: в ней использовалось 18 тыс. электронных ламп, она зани­мала помещение площадью 300 м 2 , имела массу 30 т, энергопотребле­ние - 150 кВт. Машина работала с тактовой частотой 100 кГц и вы­полняла операцию сложения за 0,2 мс, а умножения - за 2,8 мс, что было на три порядка быстрее, чем это могли делать релейные машины. Быстро обнаружились и недостатки новой машины. По своей структуре ЭВМ ENIAC напоминала механические вычис­лительные машины: использовалась десятичная система; программа набиралась вручную на 40 наборных полях; на перенастройку ком­мутационных полей уходили недели. При пробной эксплуатации выяснилось, что надежность этой машины очень низка: поиск не­исправностей занимал до нескольких суток. Для ввода и вывода данных использовались перфоленты и перфокарты, магнитные лен­ты и печатающие устройства. В компьютерах I поколения была ре­ализована концепция хранимой программы. Компьютеры I поко­ления использовались для прогнозирования погоды, решения энер­гетических задач, задач военного характера и в других важных об­ластях.

II поколение компьютеров. Одним из самых важных достиже­ний, которые привели к революции в конструировании ЭВМ и в конечном счете к созданию персональных компьютеров, было изобретение транзистора в 1948 г. Транзистор, который является твердотельным электронным переключательным элементом (вен­тилем), занимает гораздо меньше места и потребляет значитель­но меньше энергии, выполняя ту же работу, что и лампа. Вычис­лительные системы, построенные на транзисторах, были намно­го компактнее, экономичнее и гораздо эффективней ламповых. Переход на транзисторы положил начало миниатюризации, ко­торая сделала возможным появление современных персональных ЭВМ (как, впрочем, и других радиотехнических устройств - ра­диоприемников, магнитофонов, телевизоров и т.д.). Для машин II поколения встала задача автоматизации программирования, по­скольку увеличивался разрыв между временем на разработку про­грамм и непосредственно временем счета. Второй этап развития вычислительной техники конца 50-х - начала 60-х годов XX в. характеризуется созданием развитых языков программирования (ал­гол, фортран, кобол) и освоением процесса автоматизации уп­равления потоком задач с помощью самой ЭВМ, т.е. разработкой операционных систем.

В 1959 г. IBM выпустила коммерческую машину на транзисто­рах IBM 1401. Она была поставлена более чем в 10 тыс. экземпля­рах. В том же году IBM создала свой первый большой компьютер (мэйнфрейм) модели IBM 7090, полностью выполненный на базе транзисторов, с быстродействием 229 тыс. операций в секунду, а в 1961 г. разработала модель IBM 7030 для ядерной лаборатории США в Лос-Аламосе.

Ярким представителем отечественных ЭВМ II поколения ста­ла большая электронная суммирующая машина БЭСМ-6, разра­ботанная С.А. Лебедевым и его коллегами (рис. 1.8). Для компью­теров этого поколения характерно использование языков программирования высокого уров­ня, которые получили свое раз­витие в компьютерах следующе­го поколения. Транзисторные машины II поколения заняли всего лишь пять лет в биографии ЭВМ.

Рис. 1.8. БЭСМ-6

III поколение компьютеров . В 1959 г. инженеры фирмы Texas Instruments разработали способ размещения нескольких транзи­сторов и других элементов на одной основе (или подложке) и соединения этих транзисторов без использования проводников. Так родилась интегральная схема (ИС, или чип). Первая интегральная схема содержала всего шесть транзисторов. Теперь компьютеры проектировались на основе интегральных схем малой степени интеграции. Появились операционные системы, которые стали брать на себя задачи управления памятью, устройствами ввода-вывода и другими ресурсами.

В апреле 1964 г. IBM анонсировала System 360 - первое семей­ство универсальных программно-совместимых компьютеров и пе­риферийного оборудования. Элементной базой семейства System 360 были выбраны гибридные микросхемы, благодаря чему но­вые модели стали считать машинами III поколения (рис. 1.9).

Рис. 1.9. ЭВМ III поколения IBM

При создании семейства System 360 IBM в последний раз позволила себе роскошь выпускать компьютеры, несовместимые с предыду­щими. Экономичность, универсальность и небольшие габариты компьютеров этого поколения быстро расширила сферу их при­менения - управление, передача данных, автоматизация науч­ных экспериментов и т. д. В рамках этого поколения в 1971 г. был раз­работан первый микропроцессор как неожиданный результат рабо­ты фирмы Intel над созданием микрокалькуляторов. (Заметим, кста­ти, что микрокалькуляторы и в наше время прекрасно уживаются со своими «братьями по крови» - персональными компьютерами.)

IV поколение компьютеров . Этот этап в развитии вычислительной техники связан с разработкой бо­льших и сверхбольших интеграль­ных микросхем. В компьютерах IV поколения стали использоваться быстродействующие системы памяти на интегральных схемах емкостью несколько мегабайт.

Четырехразрядный микропро­цессор Intel 8004 был разработан в 1971 г. В следующем году был выпущен восьмиразрядный про­цессор, а в 1973 г. фирма Intel выпустила процессор 8080, ко­торый был в 10 раз быстрее, чем 8008, и мог адресовать 64 Кбайт памяти. Это был один из самых серьезных шагов по пути к со­зданию современных персональ­ных компьютеров. Фирма IBM выпустила свой первый персо­нальный компьютер в 1975 г. Модель 5100 имела 16 Кбайт памяти, встроенный интерпретатор языка BASIC и встроенный кассетный лентопротяжный механизм, который использовался в качестве запоминающего устройства. Дебют IBM PC состоялся в 1981 г. В этот день новый стандарт занял свое место в компьютерной индустрии. Для этого семейства было написано большое количество различных программ. Новая модификация получила название «расширенного» (IBM PC-XT) (рис. 1.10).

Рис. 1.10. Персональная ЭВМ IBM PC - XT

Производители отказались от использования магнитофона в качестве накопителя информации, добавили второй привод для гибких дисков, а в качестве основного устройства для сохранения данных и программ использовался жесткий диск емкостью 20 МБ. Модель базировалась на использовании микропроцессора - Intel 8088. Вследствие естественного прогресса в области разработки и производства микропроцессорной техники фирма Intel - постоянный партнер IBM - освоила выпуск новой серии процессоров - Intel 80286. Соответственно, появилась и новая модель IBM РС. Она получила название IBM PC-AT. Следующий этап - разработка микропроцессоров Intel 80386 и Intel 80486, которые еще можно встретить и в наши дни. Затем были разработаны процессоры Pentium, которые и являются самыми популярными процессорами на сегодняшний день.

V поколение компьютеров. В 90-х годах XX в. огромное внимание стало уделяться не столько повышению технических характеристик компьютеров, сколько их «интеллектуальности», открытой архитектуре и возможностям объединения в сети. Внимание акцентируется на разработке баз знаний, дружественного интерфейса с пользователем, графических средств представления информации и разработке средств макропрограммирования. Четких определений этого этапа развития средств ВТ нет, по­скольку элементная база, на которой основывается данная клас­сификация, осталась прежней - ясно, что все компьютеры, выпускаемые в настоящее время, можно отнести к V поколе­нию.

1.2. КЛАССИФИКАЦИЯ КОМПЬЮТЕРОВ

Компьютеры могут быть классифицированы по ряду призна­ков, в частности по принципу действия, назначению, способам организации вычислительного процесса, размерам и вычислитель­ной мощности, функциональным возможностям и др.

По принципу действия компьютеры можно разделить на две большие категории: аналоговые и цифровые.

Аналоговые компьютеры (аналоговые вычислительные машины - АВМ) - вычислительные машины непрерывного дей­ствия (рис. 1.11).

Рис. 1.11. Аналоговая вычислительная машина

Они работают с информацией, представленной в аналоговой форме, т.е. в виде непрерывного ряда значений ка­кой-либо физической величины. Существуют устройства, в кото­рых вычислительные операции выполняются с помощью гидрав­лических и пневматических элементов. Однако наибольшее рас­пространение получили электронные АВМ, в которых машинны­ми переменными служат электрические напряжения и токи.

Работа АВМ основана на общности законов, описывающих процессы различной природы. Например, колебания маятника подчиняются тем же законам, что и изменения напряженности электрического поля в колебательном контуре. И вместо того что­бы изучать реальный маятник, можно изучать его поведение на модели, реализованной на аналоговой вычислительной машине. Мало того, на этой модели можно изучать и некоторые биологи­ческие и химические процессы, подчиняющиеся тем же законам.

Основными элементами та­ких машин являются усилители, резисторы, конденсаторы и ка­тушки индуктивности, между которыми могут устанавливать­ся соединения, отражающие ус­ловия той или иной задачи. Про­граммирование задач осуществ­ляется путем набора элементов на наборном поле. На АВМ наи­более эффективно решаются математические задачи, содер­жащие дифференциальные урав­нения, не требующие сложной логики. Результаты решения выводятся в виде зависимостей элек­трических напряжений в функции времени на экран осциллогра­фа или фиксируются измерительными приборами.

В 40 - 50-х годах XX в. электронные аналоговые вычислитель­ные машины создавали серьезную конкуренцию только что по­явившимся компьютерам. Основными их достоинствами являлись высокое быстродействие (соизмеримое со скоростью прохожде­ния электрического сигнала по цепи), наглядность представления результатов моделирования.

Среди недостатков можно отметить невысокую точность вы­числений, ограниченность круга решаемых задач, ручную уста­новку параметров задачи. В настоящее время АВМ используются лишь в очень ограниченных областях - для учебных и демонстра­ционных целей, научных исследований. В практике повседневной жизни они не используются.

Цифровые компьютеры (электронные вычислительные машины - ЭВМ) основаны на дискретной логике «да-нет», «ноль-единица». Все операции производятся компьютером в соответствии с заранее составленной программой. Скорость вычислений опре­деляется тактовой частотой системы.

По этапам создания и элементной базе цифровые компьютеры условно подразделяются на пять поколений:

I поколение (1950-е гг.) - ЭВМ на электронных вакуумных
лампах;

II поколение (1960-е гг.) - ЭВМ на полупроводниковых элементах (транзисторах);

III поколение (1970-е гг.) - ЭВМ на полупроводниковых интегральных схемах с малой и средней степенями интеграции (десятки и сотни транзисторов в одном корпусе);

VI поколение (1980-е гг.) - ЭВМ на больших и сверхбольших
интегральных схемах - микропроцессорах (миллионы транзисторов в одном кристалле);

V поколение (1990-е гг. - по настоящее время) - суперкомпьютеры с тысячами параллельно работающих микропроцессоров,
позволяющих строить эффективные системы обработки огромных
массивов информации; персональные ЭВМ на сверхсложных микропроцессорах и дружественных интерфейсах с пользователем, что
определяет их внедрение практически во все сферы деятельности
человека. Сетевые технологии позволяют объединить пользователей ЭВМ в единое информационное общество.

По вычислительной мощности в 70 - 80-х годах XX в. сложи­лась следующая систематика ЭВМ.

Суперкомпьютеры - это ЭВМ, обладающие максимальными возможностями в плане быстродействия и объема вычислений. Используются для решения задач национального и общечелове­ческого масштабов - национальная безопасность, исследования в области биологии и медици­ны, моделирование поведения больших систем, прогноз пого­ды и т.д. (рис. 1.12).

Рис. 1.12. Суперкомпьютер CRAY 2

Большие ЭВМ (мэйнфрей­мы) - компьютеры, которые используются в крупных научных центрах и университетах для проведения исследований, в корпоративных системах - бан­ках, страховых, торговых учреж­дениях, на транспорте, в инфор­мационных агентствах и изда­тельствах. Мэйнфреймы объеди­няются в крупные вычислитель­ные сети и обслуживают сотни и тысячи терминалов - машин, на которых непосредственно работают пользователи и клиенты.

Мини-компьютеры - это специализированные ЭВМ, которые используются для выполнения определенного вида работ, требу­ющих относительно больших вычислительных мощностей: графи­ка, инженерные расчеты, работа с видео, верстка полиграфиче­ских изданий и т.п.

Микрокомпьютеры - это самый многочисленный и многоли­кий класс ЭВМ, основу которого составляют персональные ком­пьютеры, в настоящее время использующиеся практически во всех отраслях человеческой деятельности. Миллионы людей использу­ют их в своей профессиональной деятельности для взаимодей­ствия через Интернет, развлечения и отдыха.

В последние годы сложилась систематика, отражающая разно­образие и особенности большого класса компьютеров, на кото­рых работают непосредственные пользователи. Эти компьютеры различаются вычислительной мощностью, системным и приклад­ным программным обеспечением, набором периферийных уст­ройств, интерфейсом с пользователем и, как следствие, размера­ми и ценой. Однако все они построены на общих принципах и единой элементной базе, обладают высокой степенью совмести­мости, общими интерфейсами и протоколами обмена данными между собой и сетями. Основу этого класса машин составляют персональные компьютеры, которые в приведенной выше систе­матике соответствуют классу микроЭВМ.

Такая систематика, как и любая другая, достаточно условна; поскольку четкой границы между различными классами компь­ютеров провести невозможно, появляются модели, которые трудно отнести к определенному классу. И тем не менее она в общих чертах отражает существующее в настоящее время разнообразие вычислительных устройств.

Серверы (от англ. serve - «об­служивать», «управлять») - многопользовательские мощные ЭВМ, обеспечивающие функци­онирование вычислительных се­тей (рис. 1.13).

Рис. 1.13. Сервер S 390

Они служат для обработки запросов от всех ра­бочих станций, подключенных к сети. Сервер предоставляет дос­туп к общим сетевым ресурсам - вычислительным мощностям, базам данных, библиотекам программ, принтерам, факсам - и распределяет эти ресурсы меж­ду пользователями. В любом уч­реждении персональные компь­ютеры объединяются в локаль­ную сеть - это позволяет обес­печить обмен данными между компьютерами конечных пользователей и рационально использо­вать системные и аппаратные ресурсы.

Дело в том, что подготовка документа на компьютере (будь то счет на товар или научный отчет) занимает значительно больше времени, чем его печать. Гораздо выгоднее иметь один мощный сетевой принтер на несколько компьютеров, а распределением очереди на печать будет заниматься сервер. Если компьютеры объединены в локальную сеть, удобно иметь на сервере единую базу данных - прайс-лист всех товаров магазина, план работы научного учреждения и т.д. Кроме того, сервер обеспечивает общий выход в Интернет для всех ра­бочих станций, разграничивает доступ к информации различных категорий пользователей, устанавливает приоритеты доступа к об­щим сетевым ресурсам, ведет статистику пользования Интерне­том, контроль за работой конечных пользователей и т.д.

Персональный компьютер (PC - Personal computer) - это наи­более распространенный класс компьютеров, способных решать задачи различного уровня - от составления бухгалтерской отчет­ности до инженерных расчетов. Он рассчитан в основном на ин­дивидуальное использование (отсюда название класса, к которо­му он относится). Персональный компьютер (ПК) имеет специ­альные средства, позволяющие включать его в состав локальных и глобальных сетей. Основное содержание этой книги будет посвя­щено описанию аппаратных и программных средств именно этого класса компьютеров.

Ноутбук (от англ. notebook - «записная книжка») - этот усто­явшийся термин совершенно неправильно отражает особенности этого класса персональных компьютеров (рис. 1.14).

Рис. 1.14. Ноутбук

Его размеры и масса больше соответствуют формату большой книги, а функциональные возможности и технические характеристики пол­ностью соответствуют обычному настольному (desktoр) ПК. Дру­гое дело, что эти устройства бо­лее компактные, легкие и, са­мое главное, потребляют значительно меньше электроэнергии, что позволяет работать от аккумуляторов. Программное обеспе­чение этого класса ПК, начиная от операционной системы и за­канчивая прикладными программами, абсолютно ничем не отли­чается от настольных компьютеров. В недавнем прошлом этот класс ПК определялся как Laptop - «наколенник». Это название зна­чительно более точно отражало их особенности, но оно почему-то так и не прижилось.

Итак, основная особенность персональных компьютеров клас­са ноутбуков - мобильность. Небольшие габаритные размеры и масса, моноблочное исполнение позволяют легко размещать его в любом месте рабочего пространства, переносить с одного места на другое в специальном чехле или чемоданчике типа «дипло­мат», а питание от аккумуляторов - позволяет использовать даже в дороге (машине или самолете).

Все модели ноутбуков можно условно подразделить на три клас­са: универсальные, для бизнеса и компактные (субноутбуки). Уни­версальные ноутбуки являются полноценной заменой настольного ПК, поэтому они имеют относительно большие размеры и массу, но вместе с тем отличаются большим размером экрана и удобной клавиатурой, аналогичной настольному ПК. Имеют обычные встро­енные накопители: CD-ROM (R, RW, DVD), винчестер и флоп­пи-дисковод. Такая конструкция практически исключает возмож­ность использовать его как «дорожный» ПК. Заряда аккумулято­ров хватает только на 2-3 ч работы.

Ноутбуки бизнес-класса предназначены для использования в офисе, дома, в дороге. Они имеют существенно меньшие габарит­ные размеры и массу, минимальный состав встроенных устройств, но расширенные средства для подключения дополнительных уст­ройств. ПК этого класса служат скорее дополнением для офисно­го или домашнего десктопа, а не их заменой.

Компактные ноутбуки (субноутбуки) являются воплощением самых передовых достижений компьютерной технологии. Они имеют самую высокую степень интеграции различных устройств (в материнскую плату встроены такие компоненты, как поддержка звука, видео, локальной сети). Ноутбуки этого класса обычно снабжаются беспроводными интерфейсами устройств ввода (дополнительная клавиатура, мышь), имеют встроенный радиомодем для связи с Интернетом, в качестве накопителей информации используются компактные смарт-карты и т.д. При этом масса таких устройств не превышает 1 кг, а толщина - около 1 дюйма (2,4 см). Заряда аккумуляторов хватает на несколько часов работы, однако и стоят такие компьютеры в два-три раза дороже обычных ПК.

Карманный персональный компьютер (КПК) (РС - Росket) - состоит из тех же частей, что и настольный компьютер: процессора, памяти, звуковой и видеосистемы, экрана, слотов расширения, с помощью которых можно увеличить память или добавить другие устройства. Батарейное питание обеспечивает работу в течение двух месяцев. Все эти составляющие очень компактны и тесно интегрированы, благодаря чему аппарат весит 100...200 г и помещаются на ладони, в нагрудном кармане рубашки или дамской сумочке (рис. 1.15).

Рис. 1.15. Карманный персональный компьютер

Недаром эти устройства называют еще «наладонниками» (Palmtop).

Однако функциональные возможности КПК сильно отличаются от настольного компьютера или ноутбука. Прежде всего, у него относительно небольшой экран, как правило, нет клавиатуры и мыши, поэтому взаимодействие с пользователем организовано иначе: для этого используется экран КПК - он чувствителен к нажатию, для чего пользуются специальной палочкой, которая называется «стилус». Для набора текста на КПК применяется так называемая виртуальная клавиатура - ее клавиши отображаются прямо на экране, а текст набирается стилусом. Другое важное отличие - отсутствие винчестера, поэтому объемы хранимой информации относительно невели­ки. Основным хранилищем про­грамм и данных является встроен­ная память объемом до 64 Мбайт, а роль дисков выполняют карточ­ки флэш-памяти. На этих карточ­ках хранятся программы и данные, которые не обязательно размещать в памяти быстрого доступа (фото­альбомы, музыка в формате МРЗ, электронные книги и др.). Из-за этих особенностей КПК часто ис­пользуют в паре с настольным ПК, для чего существуют специальные интерфейсные кабели.

Ноутбук и КПК предназначены для совершенно разных задач, построены на разным принципах и лишь дополняют друг друга, но никак не заменяют.

С ноутбуком работают точно также как и настольным компьютером, а КПК включают и выключают по несколько раз на дню. Загрузка программ и выключение происхо­дит практически мгновенно.

По техническим характеристикам современные КПК вполне сравнимы с настольными компьютерами, которые выпускались всего несколько лет назад. Этого вполне достаточно для качествен­ного воспроизведения текстовой информации, например при ра­боте с электронной почтой или текстовым редактором. Современ­ные КПК снабжаются также встроенным микрофоном, динами­ками и гнездами для подключения наушников. Связь с настоль­ным ПК и другими периферийными устройствами осуществляет­ся через порт USB, инфракрасный порт (IгDA) или Вluetooth (современный беспроводной интерфейс).

Кроме специальной операционной системы КПК обычно снаб­жаются встроенными приложениями, в состав которых входит текстовый редактор, табличный редактор, планировщик, брау­зер для работы в Интернете, набор диагностических программ и т.д. В последнее время компьютеры класса Pocket РС стали снаб­жаться встроенными средствами связи с Интернетом (в качестве внешнего модема может использоваться и обычный сотовый телефон).

Благодаря своим возможностям карманные персональные компьютеры можно рассматривать не просто как упрощенный ПК с урезанными возможностями, а как совершенно равноправный член компьютерного сообщества, имеющий свои неоспоримые преиму­щества даже по сравнению с самыми продвинутыми моделями настольных компьютеров.

Электронные секретари (PDA - Personal Digital Assistant) - имеют формат карманного компьютера (массой не более 0,5 кг), но используются для других целей (рис. 1.16).

Рис. 1.16. Электронный секретарь

Они ориентирова­ны на использование электронных справочников, хранящих име­на, адреса и номера телефонов, информацию о распорядке дня и встречах, списки текущих дел, записи расходов и т.п. Элект­ронный секретарь может иметь встроенный текстовый и графи­ческие редакторы, электронные таблицы и другие офисные при­ложения.

Большинство PDA имеют модемы и могут обмениваться ин­формацией с другими ПК, а при подключении к вычислительной сети могут получать и отправлять электронную почту и факсы. Некоторые PDA для дистанционного беспроводного обмена ин­формацией с другими компьютерами оборудованы радиомодема­ми и инфракрасными портами. Электронные секретари имеют небольшой жидкокристаллический дисплей, обычно размещен­ный в откидной крышке компьютера. Ручной ввод информации возможен с миниатюрной клавиатуры или с использованием се сорного экрана, как у КПК. Компьютером PDA можно назвать лишь с большими оговорками: иногда эти устройства относят к категории сверхпортативных компьютеров, иногда к категории «интеллектуальных» калькуляторов, другие считают, что это, скорее, органайзер с расширенными возможностями.

Электронные записные книжки (от англ. organizer - «организатор») - относятся к «легчайшей категории» портативных компьютеров (масса их не превышает 200 г). Органайзеры имеют вместительную память, в которую можно записать необходимую информацию и отредактировать ее с помощью встроенного текстового редактора; в памяти можно хранить деловые письма, тексы соглашений, контрактов, распорядок дня и деловых встреч. В органайзер встроен внутренний таймер, который напоминает о важных событиях. Доступ к информации может быть защищен паролем. Органайзеры часто оснащают встроенным переводчиком, имеющим несколько словарей.

Вывод информации осуществляется на небольшой монохромный жидкокристаллический дисплей. Благодаря низкому потреблению мощности питание от аккумулятора обеспечивает без подзарядки хранение информации до пяти лет.

Смартфон (англ. smartphone) - компактное устройство, сочетающее в себе функции сотового телефона, электронной записной книжки и цифровой фотокинокамеры с мобильным доступом в Интернет (рис. 1.17).

Рис. 1.17. Смартфон

Смартфон имеет микропроцессор, оперативную память, постоянное запоминающее устройство; выход в Интернет осуществляется по каналам сотовой связи. Качество фотоснимков невысокое, но достаточное для использования в Интернете и пересылки по электронной почте. Время видеозаписи - порядка 15 с. Имеет встроенный накопитель для смарт-карт. Заряда батарей хватает для 100 ч работы. Масса 150 г. Очень удобное и полезное устройство, однако его стоимость соизмерима с ценой хорошего настольного компьютера.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО «Уральский государственный экономический университет»

Кафедра экономики и права

Филиал УрГЭУ в г. Н. Тагил

Контрольная работа

по дисциплине:

«Информатика»

Вариант 8___

Тема: «История развития средств вычислительной техники»

Исполнитель:

студент гр. 1ЭКИП

Горбунова А.А.

Преподаватель:

Скороходов Б.А.

Введение………………………………………………………………………………..3

1 Этапы развития средств вычислительной техники………………………………..4

2 Характеристика поколений ЭВМ…………………………………………………...9

3 Роль средств вычислительной техники в жизни человека………………………13

Заключение……………………………………………………………………………14

Введение

Знание истории развития вычислительной техники, является неотъемлемым компонентом профессиональной компетентности будущего специалиста в области информационных технологий. Первые шаги автоматизации умственного труда относятся именно к вычислительной активности человека, который уже на самых ранних этапах своей цивилизации начал использовать средства инструментального счета.

При этом, следует иметь в виду, что хорошо зарекомендовавшие себя средства развития вычислительной техники используются человеком и в настоящее время для автоматизации различного рода вычислений.

Автоматизированные системы являются неотъемлемой частью любого бизнеса и производства. Практически все управленческие и технологические процессы в той или иной степени используют средства вычислительной техники. Всего лишь один компьютер может заметно повысить эффективность управления предприятием, при этом не создавая дополнительных проблем. Сегодня персональные компьютеры устанавливают на каждом рабочем месте и уже, как правило, никто не сомневается в их необходимости. Значительные объемы средств вычислительной техники и их особая роль в функционировании любого предприятия ставят перед руководством целый ряд новых задач.

В данной работе будет рассмотрена история развития средств вычислительной техники, которая поможет понять и углубиться в сущность и значение ЭВМ.

1 Этапы развития средств вычислительной техники

Существует несколько этапов развития средств вычислительной техники, которыми люди пользуются и в настоящее время.

Ручной этап развития средств вычислительной техники.

Ручной период автоматизации вычислений начался на заре человеческой цивилизации и базировался на использовании различных частей тела, в первую очередь, пальцев рук и ног.

Пальцевый счет уходит корнями в глубокую древность, встречаясь в том или ином виде у всех народов и в наши дни. Известные средневековые математики рекомендовали в качестве вспомогательного средства именно пальцевый счет, допускающий довольно эффективные системы счета. Фиксация результатов счета производилась различными способами: нанесение насечек, счетные палочки, узелки и др. Например, у народов доколумбовой Америки был весьма развит узелковый счет. Более того, система узелков выполняла также роль своего рода хроник и летописей, имея достаточно сложную структуру. Однако, использование ее требовало хорошей тренировки памяти.

Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке - наиболее развитом счетном приборе древности, сохранившимся до наших дней в виде различного типа счетов.

Абак явился первым развитым счетным прибором в истории человечества, основным отличием которого от предыдущих способов вычислений было выполнение вычислений по разрядам. Таким образом, использование абака уже предполагает наличие некоторой позиционной системы счисления, например, десятичной, троичной, пятеричной и др. Многовековой путь совершенствования абака привел к созданию счетного прибора законченной классической формы, используемого вплоть до эпохи расцвета клавишных настольных ЭВМ. Да еще и сегодня кое-где его можно встретить, помогающим в расчетных операциях. И только появление карманных электронных калькуляторов в 70-е годы нашего столетия создало реальную угрозу для дальнейшего использования русских, китайских и японских счетов - трех основных классических форм абака, сохранившихся до наших дней. При этом, последняя известная попытка усовершенствования русских счетов путем объединения их с таблицей умножения относится к 1921 г.

Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления. Поэтому открытие логарифмов и логарифмических таблиц Джоном Непером в начале XVII века явилось следующим крупным шагом в развитии вычислительных систем ручного этапа. Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако, в практической работе использование логарифмических таблиц имеет ряд неудобств, поэтому Джон Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой.

Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной системе, предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений.

Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира.

Механический этап развития вычислительной техники.

Развитие механики в XVII веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический принцип вычислений. Такие устройства строились на механических элементах и обеспечивали автоматический перенос старшего разряда.

Первая механическая машина была описана в 1623 году Вильгельмом Шиккардом, реализована в единственном экземпляре и предназначалась для выполнения четырех арифметических операций над 6-разрядными числами.

Машина Шиккарда состояла из трех независимых устройств: суммирующего, множительного и записи чисел. Сложение производилось последовательным вводом слагаемых посредством наборных дисков, а вычитание - последовательным вводом уменьшаемого и вычитаемого. Вводимые числа и результат сложения и вычитания отображались в окошках считывания. Для выполнения операции умножения использовалась идея умножения решеткой. Третья часть машины использовалась для записи числа длиною не более 6 разрядов.

В машине Блеза Паскаля использовалась более сложная схема переноса старших разрядов, в дальнейшем редко используемая; но построенная в 1642 году первая действующая модель машины, а затем серия из 50 машин способствовали достаточно широкой известности изобретения и формированию общественного мнения о возможности автоматизации умственного труда.

Первый арифмометр, позволяющий производить все четыре арифметических операции, был создан Готфридом Лейбницем в результате многолетнего труда. Венцом этой работы стал арифмометр Лейбница, позволяющий использовать 8-разрядное множимое и 9-разрядный множитель с получением 16-разрядного произведения.

Особое место среди разработок механического этапа развития вычислительной техники занимают работы Чарльза Бэббиджа, с полным основанием считающегося родоначальником и идеологом современной вычислительной техники. Среди работ Бэббиджа явно просматриваются два основных направления: разностная и аналитическая вычислительные машины.

Проект разностной машины был разработан в 20-х годах XIX века и предназначался для табулирования полиномиальных функций методом конечных разностей. Основным стимулом в данной работе была настоятельная необходимость в табулировании функций и проверке существующих математических таблиц, изобилующих ошибками.

Второй проект Бэббиджа - аналитическая машина, использующая принцип программного управления и явившуюся предшественницей современных ЭВМ. Данный проект был предложен в 30-е годы XIX века, а в 1843 году Алой Лавлейс для машины Бэббиджа была написана первая в мире достаточно сложная программа вычисления чисел Бернулли.

Чарльз Бэббидж в своей машине использовал механизм, аналогичный механизму ткацкого станка Жаккарда, использующему специальные управляющие перфокарты. По идее Бэббиджа управление должно осуществляться парой жакардовских механизмов с набором перфокарт в каждом.

Бэббидж имел удивительно современные представления о вычислительных машинах, однако имевшиеся в его распоряжении технические средства намного отставали от его представлений.

Электромеханический этап развития вычислительной техники.

Электромеханический этап развития вычислительной техники явился наименее продолжительным и охватывает всего около 60 лет. Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика, статистика, управление и планирование, и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле), позволившие создавать электромеханические вычислительные устройства.

Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Первый счетно-аналитический комплекс был создан в США Германом Холлеритом в 1887 году и состоял из: ручного перфоратора, сортировочной машины и табулятора. Основным назначением комплекса являлась статистическая обработка перфокарт, а также механизации бухучета и экономических задач. В 1897 году Холлерит организовал фирму, которая в дальнейшем стала называться IBM.

Развивая работы Г. Холлерита, в ряде стран разрабатывается и производится ряд моделей счетно-аналитических комплексов, из которых наиболее популярными и массовыми были комплексы фирмы IBM, фирмы Ремингтон и фирмы Бюль.

Заключительный период (40-е годы XX века) электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электроприводом.

Конрад Цузе явился пионером создания универсальной вычислительной машины с программным управлением и хранением информации в запоминающем устройстве. Однако его первая модель Z-1 (положившая начало серии Z-машин) идейно уступала конструкции Бэббиджа - в ней не предусматривалась условная передача управления. Также, в будущем, были разработаны модели Z-2 и Z-3.

Последним крупным проектом релейной вычислительной техники следует считать построенную в 1957 году в СССР релейную вычислительную машину РВМ-1 и эксплуатировавшуюся до конца 1964 года в основном для решения экономических задач.

Электронный этап развития вычислительной техники.

В силу физико-технической природы релейная вычислительная техника не позволяла существенно повысить скорость вычислений; для этого потребовался переход на электронные безинерционные элементы высокого быстродействия.

Первой ЭВМ можно считать английскую машину Colossus, созданную в 1943 году при участии Алана Тьюринга. Машина содержала около 2000 электронных ламп и обладала достаточно высоким быстродействием, однако была узкоспециализированной.

Первой ЭВМ принято считать машину ENIAC (Electronic Numerical Integrator And Computer), созданную в США в конце 1945 года. Первоначально предназначенная для решения задач баллистики, машина оказалась универсальной, т.е. способной решать различные задачи.

Еще до начала эксплуатации ENIAC Джона Моучли и Преспера Эккерт по заказу военного ведомства США приступили к проекту над новым компьютером EDVAC (Electronic Discrete Automatic Variable Computer), который был совершеннее первого. В этой машине была предусмотрена большая память (на 1024 44-битных слов; к моменту завершения была добавлена вспомогательная память на 4000 слов для данных), предназначенная как для данных, так и для программы.

Компьютер EDSAC положил начало новому этапу развития вычислительной техники - первому поколению универсальных ЭВМ.

2 Характеристика поколений ЭВМ

Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет.

Первое поколение ЭВМ 1950-1960-е годы

Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки. В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и "умирали" вместе с этими моделями.

В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа.

ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ "Минск" и "Урал", относятся к первому поколению вычислительных машин.

Второе поколение ЭВМ: 1960-1970-е годы

Логические схемы строились на дискретных полупроводниковых и магнитных элементах. В качестве конструктивно-технологической основы использовались схемы с печатным монтажом. Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц.

Стали применяться внешние накопители на жестких магнитных дисках и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.

В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.

Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное - надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.

В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.

Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина, созданная в 1951 году.

В начале 60-х годов полупроводниковые машины стали производиться и в СССР.

Третье поколение ЭВМ: 1970-1980-е годы

Логические схемы ЭВМ 3-го поколения уже полностью строились на малых интегральных схемах. Тактовые частоты работы электронных схем повысились до единиц мегагерц. Снизились напряжения питания (единицы вольт) и потребляемая машиной мощность. Существенно повысились надежность и быстродействие ЭВМ.

В оперативных запоминающих устройствах использовались миниатюрнее ферритовые сердечники, ферритовые пластины и магнитные пленки с прямоугольной петлей гистерезиса. В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители.

Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующая кэш-память.

Начиная с момента широкого использования интегральных схем в компьютерах, технологический прогресс в вычислительных машинах можно наблюдать, используя широко известный закон Мура. Один из основателей компании Intel Гордон Мур в 1965 году открыл закон, согласно которому количество транзисторов в одной микросхеме удваивается через каждые 1,5 года.

Ввиду существенного усложнения как аппаратной, так и логической структуры ЭВМ 3-го поколения часто стали называть системами.

В вычислительных машинах третьего поколения значительное внимание уделяется уменьшению трудоемкости программирования, эффективности исполнения программ в машинах и улучшению общения оператора с машиной. Это обеспечивается мощными операционными системами, развитой системой автоматизации программирования, эффективными системами прерывания программ, режимами работы с разделением машинного времени, режимами работы в реальном времени, мультипрограммными режимами работы и новыми интерактивными режимами общения. Появилось и эффективное видеотерминальное устройство общения оператора с машиной - видеомонитор, или дисплей.

Большое внимание уделено повышению надежности и достоверности функционирования ЭВМ и облегчению их технического обслуживания. Достоверность и надежность обеспечиваются повсеместным использованием кодов с автоматическим обнаружением и исправлением ошибок (корректирующие коды Хеммин-га и циклические коды).

Четвертое поколение ЭВМ: 1980-1990-е годы

Революционным событием в развитии компьютерных технологий четвертго поколения машин было создание больших и сверхбольших интегральных схем, микропроцессора и персонального компьютера.

Логические интегральные схемы в компьютерах стали создаваться на основе униполярных полевых CMOS-транзисторов с непосредственными связями, работающими с меньшими амплитудами электрических напряжений.

Пятое поколение ЭВМ: 1990-настоящее время

Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:

Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.

Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.

Шестое и последующие поколения ЭВМ

Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

3 Роль средств вычислительной техники в жизни человека.

Роль информатики в целом в современных условиях постоянно возрастает. Деятельность как отдельных людей, так и целых организаций все в большей степени зависит от их информированности и способности эффективно использовать имеющуюся информацию. Прежде чем предпринять какие-то действия, необходимо провести большую работу по сбору и переработке информации, ее осмыслению и анализу. Отыскание рациональных решений в любой сфере требует обработки больших объемов информации, что подчас невозможно без привлечения специальных технических средств. Внедрение компьютеров, современных средств переработки и передачи информации в различные индустрии послужило началом процесса, называемого информатизацией общества. Современное материальное производство и другие сферы деятельности все больше нуждаются в информационном обслуживании, переработке огромного количества информации. Информатизация на основе внедрения компьютерных и телекоммуникационных технологий является реакцией общества на потребность в существенном увеличении производительности труда в информационном секторе общественного производства, где сосредоточено более половины трудоспособного населения.

Информационные технологии вошли во все сферы нашей жизни. Компьютер является средством повышения эффективности процесса обучения, участвует во всех видах человеческой деятельности, незаменим для социальной сферы. Информационные технологии - это аппаратно-программные средства, базирующиеся на использовании вычислительной техники, которые обеспечивают хранение и обработку образовательной информации, доставку ее обучаемому, интерактивное взаимодействие студента с преподавателем или педагогическим программным средством, а также тестирование знаний студента.

Можно предположить, что эволюция технологии в общем и целом продолжает естественную эволюцию. Если освоение каменных орудий помогло сформироваться человеческому интеллекту, металлические повысили производительность физического труда (настолько, что отдельная прослойка общества освободилась для интеллектуальной деятельности), машины механизировали физический труд, то информационная технология призвана освободить человека от рутинного умственного труда, усилить его творческие возможности.

Заключение

Жить в XXI веке образованным человеком можно, только хорошо владея информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Об информации начинают говорить как о стратегическом ресурсе общества, как о ресурсе, определяющем уровень развития государства.

С помощью изучения истории развития средств вычислительной техники можно познать все строение и значение ЭВМ в жизни человека. Это поможет лучше в них разбираться и с легкостью воспринимать новые прогрессирующие технологии, ведь не нужно забывать о том, что компьютерные технологии прогрессируют, почти, каждый день и если не разобраться в строении машин, которые были много лет назад, трудно будет преодолеть нынешнее поколение.

В представленной работе удалось показать с чего начиналось и чем заканчивается развитие средств вычислительной техники и какую важную роль играют они для людей в настоящее время.