Ошибки 

Самые большие и мощные телескопы в мире. Самый большой телескоп в мире Самый мощный космический телескоп

Рейтинг самых лучших телескопов 2018 — 2019 года составляют 10 наиболее мощных и качественных моделей, по мнению покупателей. Топ-10 телескопов отличаются оптимальным соотношением цена-качество, делающих их доступными для любой категории населения.

10 Synta Protostar 50 AZ

Отличительными чертами Synta Protostar 50 AZ являются легкость, надежность и простота установки. Благодаря малым габаритам, оборудование достаточно транспортабельно, что сделано с целью его использования детьми или астрономами-любителями.

Можно осуществлять наблюдения за астрономическими и наземными объектами. В комплект поставки входят окуляры, линза Барлоу. Азимутальная монтировка сделает наблюдения не только захватывающими, но и удобными. Данная модель телескопа — отличное решение для начинающих астрономов.

Плюсы:

  • Легкий вес.
  • Простая установка и эксплуатация.
  • Доступная ценовая политика.

Минусы:

  • Неточный искатель.
  • Долгая фокусировка на объекте.
  • Отсутствие точных настроек направления телескопа.

9 Celestron PowerSeeker 50 AZ


Celestron PowerSeeker 50 AZ — ахроматический рефрактор, который комплектуется азимутальной монтировкой и штативом для установки прибора на стол. Главным отличием представленной модели от других телескопов является его предназначение: наблюдение за наземными объектами, при котором достигается максимальная степень четкости. С целью получения прямого изображения используется оборачивающий окуляр. Данная модель станет отличным решением для астрономов-любителей.

Плюсы:

  • Низкая стоимость.
  • Легкий вес.
  • Простое использование и управление.

Минусы:

  • Отсутствие поворотных и фиксирующих механизмов.
  • Не очень хорошая система наведения.

8 iOptron Astroboy


iOptron Astroboy представляет собой портативный телескоп с функцией автоматического наведения. Для этого необходимо только выбрать интересующий объект, после чего встроенный компьютер развернет телескоп в нужном направлении. Более того, удерживание объекта будет происходить даже при вращении Земли. Такая функция присутствует только в представленной модели детских телескопов.

Прибор — отличное решение для детей. Он подходит для наблюдения за астрономическими и наземными объектами. С легкостью собирается и устанавливается, а точная наводка становится возможной за счет сервомотора с двумя осями. В комплекте имеется пульт с дисплеем и клавишами с подсветкой, что привнесет в процесс познания космического пространства еще больше интереса.

Плюсы:

  • Точная и качественная оптика.
  • Простая сборка и эксплуатация.
  • Широкий комплект поставки.

Минусы:

  • Среднее качество материала сборки.
  • Малое количество функций.

7 Levenhuk Strike 50 NG


Данная модель предназначена для использования детьми, с целью общего обзора созвездий и планет. Однако особенностью модели является возможность разглядывания компонентов двойных звезд с расстоянием между ними всего в 2,5 секунды дуги. Монтировка трубы альтзимутального типа отличается простым управлением и не требует сборки.

Levenhuk Strike 50 NG обладает богатым поставочным комплектом, в который входят различные оптические аксессуары. Некоторые из них выдают 200-кратное увеличение, позволяющее в мельчайших подробностях рассматривать астрономические и наземные объекты, что способно на несколько часов заворожить юных астрономов.

Плюсы:

  • Широкая комплектация.
  • Простое управление.
  • Надежная конструкция.

Минусы:

  • Слабоват для профессионального изучения космоса.
  • Отсутствие наглазников на окулярах.

6 Synta NBK 707EQ1


Телескоп Synta NBK 707EQ1 — отличный вариант для начинающих астрономов. Отличительной чертой оборудования является классический линзовый рефрактор на экваториальной монтировке. Объектив размером в 70 мм имеет многослойное покрытие. Конструкция отличается легкостью, но достаточной степенью устойчивости, что делает наблюдения простыми и комфортными. Штатив телескопа, выполненный из алюминия, регулируется по высоте, а полочка для аксессуаров сделает наблюдения более удобными.

Плюсы:

  • Богатый комплект поставки.
  • Высокое качество материалов.
  • Низкая стоимость.

Минусы:

  • Короткий выдвижной штатив.
  • Нечеткое качество изображения некоторых линз и окуляров, входящих в комплект.

5 Levenhuk Strike 60 NG


Телескоп основан на рефракторе на азимутальной монтировке, что делает возможным его использование новичками-любителями, для которых и создана модель. Выдаваемое прямое изображение позволяет наблюдать за наземными объектами.

Чтобы было проще найти интересующие объекты, Levenhuk Strike 60 NG оснащен искателем с красной точкой наведения. Крепление трубы телескопа осуществляется на альт-азимутальную монтировку, которая отличается простой эксплуатацией, не требующей специальных астрономических навыков. В комплект входят динамическая карта звездного неба и компас, позволяющие с легкостью ориентироваться в космическом пространстве.

Плюсы:

  • Легкая сборка и транспортировка.
  • Удобный искатель с красной точкой.
  • Достойное качество изображения.

Минусы:

  • Материал сборки — пластик, в том числе и линзы.
  • Ограниченный диапазон увеличения.
  • Среднее качество монтировки.

4 BRESSER Arcturus 60/700 AZ


Оптика представленной модели телескопа изготовлена из специального высококачественного стекла с многослойным просветлением, позволяющим получать изображения повышенной яркости. Высокая четкость картинки и цветопередачи обуславливаются ахроматическим объективом с длинным фокусом, что свойственно только для данной модели телескопа.

Максимальное увеличение BRESSER Arcturus 60/700 AZ составляет 120 крат, а за счет универсального объектива становится возможным использование разных окуляров, что, несомненно, оценят астрономы-любители, для которых предназначена модель. Комплект содержит лунную карту, компас, а также сумку для хранения и транспортировки оборудования.

Плюсы:

  • Высокое качество материалов.
  • Богатый комплект поставки.

Минусы:

  • Фоторежим только с использованием дополнительных приспособлений.
  • Достаточно высокая стоимость.

3 Celestron PowerSeeker 127 EQ


Celestron PowerSeeker 127 EQ оснащен исключительно стеклянными объективами. С целью лучшего светопропускания оптические элементы покрыты специальным просветляющим напылением. 3-х кратная линза Барлоу увеличивает объекты в 150 и 750 крат. Одной из наиболее примечательных функций данной модели телескопа является планетарная программа, в которой содержится база данных на 10 тысяч объектов.

Модель подходит как для любителей, так и для профессионалов в области астрономии. Все необходимые аксессуары для наблюдения за звездным небом всегда будут под рукой благодаря алюминиевому штативу с полочкой, предназначенной для мелких деталей, а запечатлеть необыкновенные космические виды можно благодаря функции печати звездных карт.

Плюсы:

  • Простая сборка и управление.
  • Низкая стоимость.
  • Четкое изображение всех планет солнечной системы.

Минусы:

  • Большие габариты и тяжелый вес.
  • Окуляры лишены резиновых наглазников.

2 Synta NBK 130650EQ2


Представленная модель подходит астрономам со стажем, поскольку собрана в соответствии с системой Ньютона. Главной особенностью такого телескопа является независимость от хроматической аберрации, свойственной линзовым системам.

Synta NBK 130650EQ2 позволяет наблюдать не только за планетами и двумя небесными светилами, но и за объектами глубокого космоса, что становится возможным благодаря апертуре в 130 мм. Монтировка EQ2 обеспечивает надежную устойчивость трубе телескопа, сводя к минимуму возможные вибрации. В комплект входят два окуляра, выдающие 65-ти и 26-ти кратное увеличение. Также модель оснащена искателем с красной точкой для удобного наведения на объекты, что ускоряет и упрощает процесс поиска.

Плюсы:

  • Высокие качество и надежность всех деталей.
  • Большая апертура.
  • Кристально чистая оптика.

Минусы:

  • Большие габариты.
  • Нечеткое изображение окуляра в 10 мм.

1 Celestron AstroMaster 90 EQ


Считается одной из самых мощных моделей, в большей степени, предназначенной для профессиональных астрономов. Отличается качественной оптикой и простой эксплуатацией. Оборудование легко и быстро подготавливается к работе, не требуя использования специальных инструментов для сборки.

Celestron AstroMaster 90 EQ имеет 2 окуляра, дающие увеличения в 50 и 100 крат. Призма, оборачивающаяся на 90 градусов, выдает правильно ориентированное изображение, поиск которого значительно упрощается за счет встроенного искателя «StarPointer» с наведением в виде красной точки. Данная модель — универсальна и подходит для наблюдения за наземными и небесными объектами.

Плюсы:

  • Изображение высокой четкости.
  • Простота в использовании.
  • Простая сборка и настройка.

Минусы:

  • Тяжелый вес.
  • Большие размеры, усложняющие перестановку или транспортировку.

Продолжение обзора самых крупных телескопов мира, начатого в

Диаметр главного зеркала более 6 метров.

Смотрите так же расположение крупнейших телескопов и обсерваторий на

Многозеркальный Телескоп

Башня «Многозеркального телескопа» на фоне кометы Хейла-Боппа. Гора Маунт-Хопкинс (США).

Multiple Mirror Telescope (MMT). Находится в обсерватории «Маунт-Хопкинс» в штате Аризона, (США) на горе Маунт-Хопкинс на высоте 2606 метров. Диаметр зеркала — 6,5 метров. Начал работу с новым зеркалом 17 мая 2000 г.

На самом деле этот телескоп был построен в 1979 году, но тогда его объектив был выполнен из шести зеркал по 1,8 метра, что эквивалентно одному зеркалу диаметром 4,5 метра. На момент постройки это был третий по мощности телескоп в мире после БТА-6 и Хейла (см. предыдущий пост).

Шли годы, технологии улучшались, и уже в 90-х стало ясно, что вложив относительно небольшое количество средств, можно заменить 6 отдельных зеркал на одно большое. Причём, это не потребует значительных изменений конструкции телескопа и башни, а количество света, собираемое объективом увеличится в целых 2,13 раза.


Multiple Mirror Telescope до (слева), и после (справа) реконструкции.

Эта работа была выполнена к маю 2000 года. Было установлено 6,5 метровое зеркало, а так же системы активной и адаптивной оптики. Это не цельное, а сегментированное зеркало, состоящее из точно подогнанных 6-ти угольных сегментов, так что название телескопа менять не пришлось. Разве, что иногда стали добавлять приставку «новый».

У нового MMT, кроме того что он стал видеть в 2,13 раза более слабые звёзды, в 400 раз увеличилось поле зрения. Так что, работа явно не прошла даром.

Активная и адаптивная оптика

Система активной оптики позволяет при помощи специальных приводов, установленных под главным зеркалом, компенсировать деформацию зеркала при вращении телескопа.

Адаптивная оптика , посредством отслеживания искажения света искусственных звёзд в атмосфере, созданных с помощью лазеров, и соответствующего искривления вспомогательных зеркал, компенсирует атмосферные искажения.

Телескопы Магеллана

Телескопы Магеллана. Чили. Расположены на расстоянии 60 м. друг от друга, могут работать в режиме интерферометра.

Magellan Telescopes — два телескопа — «Магеллан-1» и «Магеллан-2», с зеркалами по 6,5 метров диаметром. Расположены в Чили, в обсерватории «Лас-Кампанас» на высоте 2400 км. Кроме общего названия у каждого из них есть ещё и своё имя — первый, назван в честь немецкого астронома Вальтера Бааде, начал работу 15 сентября 2000 года, второй, названный в честь Лэндона Клэя — американского филантропа, вступил в строй 7 сентября 2002 года.

Обсерватория Лас-Кампанас расположена в двух часах езды на машине от города Ла-Серена. Это очень удачное место для расположения обсерватории как благодаря достаточно большой высоте над уровнем моря, так и благодаря удалённости от населенных пунктов и источников пыли. Два телескопа-близнеца «Магеллан-1» и «Магеллан-2», работающие как по отдельности, так и в режиме интерферометра (как единое целое) на данный момент являются основными инструментами обсерватории (ещё есть один 2,5 метровый и два 1-метровых рефлектора).

Гигантский Магелланов Телескоп (ГМТ). Проект. Дата реализации — 2016 год.

23 марта 2012 года эффектным взрывом верхушки одной из ближайших гор было начато строительство «Гигантского Магелланова Телескопа» (ГМТ). Вершину горы снесли, чтобы расчистить место для нового телескопа, который должен начать работу в 2016 году.

Giant Magellan Telescope (GMT) будет состоять из семи зеркал по 8,4 метра каждое, что эквивалентно одному зеркалу диаметром 24 метра, за это его уже прозвали «Семиглаз». Из всех проектов огромных телескопов этот (на 2012 год) — единственный, реализация которого перешла из стадии планирования к практическому строительству.

Телескопы «Джемини»

Башня телескопа «Джемини север». Гавайи. Вулкан Мауна-Кеа (4200 м). «Джемини юг». Чили. Гора Серра-Пачон (2700 м).

Тоже два телескопа-близнеца, только каждый из «братьев» расположен в другой части света. Первый — «Джемини север» — на Гавайях, на вершине потухшего вулкана Мауна-Кеа (высота 4200 м). Второй — «Джемини юг», находится в Чили на горе Серра-Пачон (высота 2700 м).

Оба телескопа идентичны, диаметры их зеркал составляют 8,1 метра, построены они в 2000 г. и принадлежат обсерватории «Джемини», управляемой консорциумом из 7 стран мира.

Так как телескопы обсерватории расположены в разных полушариях Земли, то этой обсерватории доступно для наблюдения всё звёздное небо. К тому же, системы управления телескопами приспособлены для удалённой работы через интернет, поэтому астрономам не приходится совершать далёкие путешествия от одного телескопа к другому.

Северный «Джемини». Вид внутри башни.

Каждое из зеркал этих телескопов составлено из 42 шестиугольных фрагментов, которые были спаяны и отполированы. В телескопах используются системы активной (120 приводов) и адаптивной оптики, особая система серебрения зеркал, что обеспечивает уникальное качество изображения в инфракрасном диапазоне, система много-объектной спектроскопии, в общем «полный фарш» самых современных технологий. Всё это делает обсерваторию «Джемини» одной из самых совершенных астрономических лабораторий на сегодняшний день.

Телескоп «Субару»

Японский телескоп «Субару». Гавайи.

«Субару» по-японски значит «Плеяды», название этого красивейшего звёздного скопления знает каждый, даже начинающий, любитель астрономии. Subaru Telescope принадлежит Японской Национальной Астрономической Обсерватории , но расположен на Гавайях, на территории Обсерватории Мауна-Кеа , на высоте 4139 м., то есть по соседству с северным «Джемини». Диаметр его главного зеркала — 8,2 метра. «Первый свет» увидел в 1999 году.

Его главное зеркало — крупнейшее в мире цельное зеркало телескопа, но оно относительно тонкое — 20 см., его вес составляет «всего» 22,8 т. Это позволяет эффективно использовать точнейшую систему активной оптики из 261 привода. Каждый привод передаёт своё усилие на зеркало, придавая ему идеальную поверхность в любом положении, что позволяет добиться практически рекордного на сегодняшний день качества изображения.

Телескоп с такими характеристиками просто обязан «увидеть» во вселенной неведомые доселе чудеса. И действительно, с его помощью была открыта самая далёкая из известных на сегодняшний день галактик (расстояние 12,9 млрд. св. лет), самая большая структура во вселенной — объект протяжённостью 200 млн. световых лет, вероятно зародыш будущего облака галактик, 8 новых спутников Сатурна.. Ещё этот телескоп «особо отличился» в поиске экзопланет и фотографировании протопланетных облаков (на некоторых снимках даже различимы сгустки протопланет).

Телескоп Хобби-Эберли

Обсерватория Мак-Дональд. Телескоп Хобби-Эберли. США. Техас.

The Hobby-Eberly Telescope (HET) — расположен в США, в Обсерватории Мак-Дональд. Обсерватория располагается на горе Фолкс, на высоте 2072 м. Начало работы — декабрь 1996г. Эффективная апертура главного зеркала — 9,2 м. (Фактически зеркало имеет размер 10х11 м, но принимающие свет приборы, расположенные в фокальном узле, обрезают края до диаметра 9,2 метра.)

Не смотря на большой диаметр главного зеркала этого телескопа, Хобби-Эберли можно отнести к низко бюджетным проектам — он обошёлся всего в 13,5 млн. долларов США. Это немного, например тот-же «Субару» стоил своим создателям около 100 млн.

Сэкономить бюджет удалось благодаря нескольким конструктивным особенностям:

  • Во-первых, этот телескоп был задуман как спектрограф, а для спектральных наблюдений достаточно сферического, а не параболического главного зеркала, что гораздо проще и дешевле в производстве.
  • Во-вторых, главное зеркало не цельное, а составленное из 91 идентичного сегмента (так как его форма сферическая), что так же очень удешевляет конструкцию.
  • В-третьих, главное зеркало находится под фиксированным углом к горизонту (55°) и может вращаться только на 360° вокруг своей оси. Это избавляет от необходимости снабжения зеркала сложной системой корректировки формы (активная оптика), так как угол его наклона не изменяется.

Но не смотря на такое фиксированное положение главного зеркала, этот оптический инструмент охватывает 70% небесной сферы за счёт движения 8-тонного модуля приёмников света в фокальной области. После наведения на объект главное зеркало остаётся неподвижным, а движется только фокальный узел. Время непрерывного ведения объекта составляет от 45 минут у горизонта до 2 часов в верхней части небосвода.

Благодаря своей специализации (спектрография) телескоп успешно используется, например, для поиска экзопланет или для измерения скорости вращения космических объектов.

Большой южноафриканский телескоп

Большой Южноафриканский Телескоп. SALT. ЮАР.

Southern African Large Telescope (SALT) — находится в ЮАР в Южно-африканской Астрономической Обсерватории в 370 км к северо-востоку от Кейптауна. Обсерватория расположена на сухом плато Кару, на высоте 1783 м. Первый свет — сентябрь 2005 года. Размеры зеркала 11х9,8 м.

Правительство Южно-Африканской Республики вдохновлённое дешевизной телескопа HET, решило построить его аналог дабы не отставать от других развитых стран мира в изучении вселенной. К 2005 году строительство было завершено, весь бюджет проекта составил 20 млн. долларов США половина из которых пошла на сам телескоп, другая половина — на здание и инфраструктуру.

Так как телескоп SALT является практически полным аналогом HET, то всё, что было сказано выше о HET’е относится и к нему.

Но, конечно не обошлось без некоторой модернизации — в основном она коснулась коррекции сферической аберрации зеркала и увеличению поля зрения, благодаря чему кроме работы в режиме спектрографа, этот телескоп способен получать прекрасные фотографии объектов с разрешением до 0,6″. Адаптивной оптикой данный прибор не снабжён (наверное у правительства ЮАР не хватило денег).

Кстати, зеркало этого телескопа, крупнейшее в южном полушарии нашей планеты, делалось на «Лыткаринском заводе оптического стекла», то есть на том же, что и зеркало телескопа БТА-6, крупнейшего в России.

Самый большой телескоп в мире

Большой Канарский телескоп

Башня Большого Канарского телескопа. Канарские о-ва (Испания).

The Gran Telescopio CANARIAS (GTC) — расположен на вершине потухшего вулкана Мучачос на острове Ла-Пальма на северо-западе Канарского архипелага, на высоте — 2396 м. Диаметр главного зеркала — 10,4 м (площадь — 74 кв.м.) Начало работы — июль 2007 года.

Обсерватория называется Роке-де-лос-Мучачос. В создании GTC принимали участие Испания, Мексика и университет Флориды. Этот проект обошёлся в 176 млн. долл. США, из которых 51% заплатила Испания.

Зеркало Большого Канарского Телескопа диаметром 10,4 метра, составленное из 36 шестиугольных сегментов — крупнейшее из существующих на сегодняшний день в мире (2012 г). Сделано по аналогии с телескопами Кека.

..и, похоже GTC будет удерживать первенство по данному параметру пока в Чили на горе Армазонес (3 500 м) не построят телескоп с зеркалом сразу в 4 раза большего диаметра — «Экстремально Большой Телескоп» (European Extremely Large Telescope), или же на Гавайях не возведут Тридцатиметровый телескоп (Thirty Meter Telescope). Какой из этих двух конкурирующих проектов будет воплощён быстрее — неизвестно, но по плану и тот и другой должны быть закончены к 2018 году, что для первого проекта выглядит более сомнительно, чем для второго.

Конечно, есть ещё 11 метровые зеркала телескопов HET и SALT, но как уже говорилось выше, из 11 метров у них эффективно используется лишь 9,2 м.

Хотя это и крупнейший телескоп в мире по размеру зеркала, нельзя назвать его самым мощным по оптическим характеристикам, так как в мире существуют многозеркальные системы, превосходящие GTC по своей зоркости. О них и пойдёт речь далее..

Большой Бинокулярный Телескоп

Башня Большого Бинокулярного Телескопа. США. Аризона.

(Large Binocular Telescope — LBT) — расположен на горе Грэхем(высота 3,3 км.) в штате Аризона (США). Принадлежит Международной Обсерватории Маунт-Грэм. Его строительство обошлось в 120 млн. долл., деньги вложили США, Италия и Германия. LBT — это оптическая система из двух зеркал диаметром 8,4 метра, что по светочувствительности эквивалентно одному зеркалу диаметром 11,8 м. В 2004 году LBT «открыл один глаз», в 2005 было установлено второе зеркало. Но только с 2008 года он заработал в бинокулярном режиме и в режиме интерферометра.

Большой Бинокулярный Телескоп. Схема.

Центры зеркал находятся на расстоянии 14,4 метра, что делает разрешающую способность телескопа эквивалентной 22-метровому, а это почти в 10 раз больше, чем у знаменитого космического телескопа Хаббла. Общая площадь зеркал составляет 111 кв. м., то есть на целых 37 кв. м. больше, чем у GTC.

Конечно, если сравнивать LBT с многотелескопными системами, такими как телескопы Кека или VLT, которые могут работать в режиме интерферометра с большими, чем у LBT базами (расстоянием между компонентами) и, соответственно, давать ещё большее разрешение, то Большой Бинокулярный Телескоп уступит им по этому показателю. Но сравнивать интерферометры с обычными телескопами не совсем правильно, так как они не могут в таком разрешении давать фотографии протяжённых объектов.

Так как оба зеркала LBT посылают свет в общий фокус, то есть являются частью одного оптического прибора, в отличие от телескопов, о которых пойдёт речь дальше, плюс наличие у этого гигантского бинокля новейших систем активной и адаптивной оптики, то можно утверждать, что Большой Бинокулярный Телескоп — самый совершенный оптический прибор в мире на данный момент.

Телескопы Вильяма Кека

Башни телескопов Вильяма Кека. Гавайи.

Keck I и Keck II — ещё одна пара телескопов-близнецов. Место расположения — Гавайи, обсерватория Мауна-Кеа, на вершине вулкана Мауна-Кеа (высота 4139 м.), то есть там же где и японский телескоп «Субару» и «Джемини Север». Инаугурация первого Кека состоялась в мае 1993 года, второго — в 1996 г.

Диаметр главного зеркала каждого из них составляет 10 метров, то есть каждый из них в отдельности является вторым по величине в мире телескопом после Большого Канарского, совсем немного уступая последнему по размеру, но превосходя его по «зоркости», благодаря возможности работать в паре, а так же более высокому расположению над уровнем моря. Каждый из них способен дать угловое разрешение до 0,04 угловой секунды, а работая вместе, в режиме интерферометра с базой 85 метров — до 0,005″.

Параболические зеркала этих телескопов составлены из з6 шестиугольных сегментов, каждый из которых снабжён специальной опорной системой, с компьютерным управлением. Первая фотография была получена ещё в 1990 году, когда у первого Кека было установлено всего 9 сегментов, это была фотография спиральной галактики NGC1232.

Очень Большой Телескоп

Очень Большой Телескоп. Чили.

Very Large Telescope (VLT). Расположение — гора Параналь (2635 м.) в пустыне Атакама в горном массиве чилийских Анд. Соответственно обсерваторию называют Паранальская, принадлежит она Европейской Южной Обсерватории (ESO), включающей в себя 9 европейских стран.

VLT — это система из четырёх телескопов по 8,2 метра, и ещё четырёх вспомогательных по 1,8 метра. Первый из главных инструментов вступил в строй в 1999 году, последний — в 2002, позже — вспомогательные. После этого в течение ещё нескольких лет велись работы по настройке интерферометрического режима, инструменты соединялись сначала попарно, затем все вместе.

В настоящее время телескопы могут работать в режиме когерентного интерферометра с базой около 300 метров и разрешением до 10 микросекунд дуги. Так же, в режиме единого некогерентного телескопа, собирая свет в один приёмник по системе подземных туннелей, при этом светосила такой системы эквивалентна одному прибору с диаметром зеркала 16,4 метра.

Естественно, каждый из телескопов может работать и отдельно, получая фотографии звёздного неба с экспозицией до 1 часа, на которых видны звёзды до 30-ой звёздной величины.

Первое прямое фото экзопланеты, рядом со звездой 2M1207 в созвездии Центавра. Получено на VLT в 2004 году.

Материально-техническое оснащение Паранальской обсерватории самое продвинутое в мире. Труднее сказать каких приборов для наблюдения за вселенной здесь нет, чем перечислить какие есть. Это спектрографы всевозможных типов, а так же приёмники излучения от ультрафиолетового до инфракрасного диапазона, так же всех возможных видов.

Как говорилось выше, система VLT может работать как единое целое, но это очень дорогостоящий режим, поэтому он используется редко. Чаще, для работы в интерферометрическом режиме каждый из больших телескопов работает в паре со своим 1,8 метровым помощником (Auxiliary Telescope — AT). Каждый из вспомогательных телескопов может двигаться по рельсам относительно своего «босса», занимая наиболее выгодное для наблюдения данного объекта положение.

Всё это делает VLT мощнейшей оптической системой в мире , а ESO — самой продвинутой астрономической обсерваторией в мире, это настоящий рай для астрономов. На VLT была сделана масса астрономических открытий, а так же невозможных до этого наблюдений, например, было получено первое в мире прямое изображение экзопланеты.

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем . Ученый, основываясь на слухах об изобретении голландцами зрительной трубы, разгадал ее устройство и изготовил образец, который впервые использовал для космических наблюдений. Первый телескоп Галилея имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение.Но позволил сделать целую серию замечательных открытий: обнаружить четыре спутника планеты Юпитер , фазы Венеры , пятна на Солнце, горы на поверхности Луны, наличие у диска Сатурна придатков в двух противоположных точках.

Прошло более четырехсот лет - на земле и даже в космосе современные телескопы помогают землянам заглянуть в далекие космические миры. Чем больше диаметр зеркала телескопа, тем мощнее оптическая установка.

Многозеркальный телескоп

Расположен на горе Маунт-Хопкинс, на высоте 2606 метров над уровнем море, в штате Аризона в США . Диаметр зеркала этого телескопа – 6,5 метров . Этот телескоп был построен еще в 1979 году. В 2000 году он был усовершенствован. Многозеркальным он называется, потому что состоит из 6 точно подогнанных сегментов, составляющих одно большое зеркало.


Телескопы Магеллана

Два телескопа, “Магеллан -1″ и “Магеллан-2″, находятся в обсерватории “Лас-Кампанас” в Чили , в горах, на высоте 2400 м, диаметр их зеркал 6,5 м у каждого . Телескопы начали работать в 2002 году.

А 23 марта 2012 года начато строительство еще одного более мощного телескопа «Магеллан» - «Гигантского Магелланова Телескопа», он должен вступить в строй в 2016-м. А пока взрывом была снесена вершина одной из гор, чтобы расчистить место для строительства. Гигантский телескоп будет состоять из семи зеркал по 8,4 метра каждое, что эквивалентно одному зеркалу диаметром 24 метра, за это его уже прозвали “Семиглаз”.


Разлученные близнецы телескопы «Джемини»

Два телескопа-брата, каждый из которых расположен в другой части света. Один – «Джемини север» стоит на вершине потухшего вулкана Мауна-Кеа на Гавайях , на высоте 4200 м. Другой – «Джемини юг», находится на горе Серра-Пачон (Чили) на высота 2700 м.

Оба телескопа идентичны, диаметры их зеркал составляют 8,1 метра , построены они в 2000 г. и принадлежат обсерватории «Джемини». Телескопы расположены на разных полушариях Земли, чтобы было доступно для наблюдения все звездное небо. Системы управления телескопами приспособлены для работы через интернет, поэтому астрономам не приходится совершать путешествия к разным полушариям Земли. Каждое из зеркал этих телескопов составлено из 42 шестиугольных фрагментов, которые были спаяны и отполированы. Эти телескопы созданы по самым совершенным технологиям, что делает обсерваторию «Джемини» одной из передовых астрономических лабораторий на сегодняшний день.


Северный "Джемини" на Гаваях

Телескоп «Субару»

Этот телескоп принадлежит Японской Национальной Астрономической Обсерватории. А расположен на Гавайях, на высоте 4139 м, по соседству с одним из телескопов «Джемини». Диаметр его зеркала – 8,2 метра . «Субару» оснащенкрупнейшим в мире «тонким» зеркалом.: его толщина – 20 см., его вес - 22,8 т. Это позволяет использовать систему приводов, каждый из которых передает свое усилие на зеркало, придавая ему идеальную поверхность в любом положении, что позволяет добиться самого лучшего качества изображения.

С помощью этого зоркого телескопа была открыта самая далекая из известных на сегодняшний день галактик, расположенная на расстояние 12,9 млрд. св. лет, 8 новых спутников Сатурна, сфотографированы протопланетные облака.

Кстати, «субару» по-японски значит «Плеяды» - название этого красивейшего звездного скопления.


Японский телескоп "Субару" на Гаваях

Телескоп Хобби-Эберли (НЕТ)

Расположен в США на горе Фолкс, на высоте 2072 м, и принадлежит обсерватории Мак-Дональд. Диаметр его зеркала около 10 м . Несмотря на внушительные размеры, Хобби-Эберли обошелся своим создателям всего в 13,5 млн. долларов. Сэкономить бюджет удалось благодаря некоторым конструктивным особенностям: зеркало у этого телескопа не параболическое, а сферическое, не цельное – состоит из 91 сегмента. К тому же зеркало находится под фиксированным углом к горизонту (55°) и может вращаться только на 360° вокруг своей оси. Все это значительно удешевляет конструкцию. Специализируется этот телескоп на спектрографии и успешно используется для поиска экзопланет и измерения скорости вращения космических объектов.


Большой южноафриканский телескоп (SALT)

Принадлежит Южно-африканской Астрономической Обсерватории и находится в ЮАР , на плато Кару , на высоте 1783 м. Размеры его зеркала 11х9,8 м . Оно крупнейшее в Южном полушарии нашей планеты. А изготовлено в России , на «Лыткаринском заводе оптического стекла». Этот телескоп стал аналогом телескопа Хобби-Эберли в США. Но был модернизирован – откорректирована сферическая аберрация зеркала и увеличено поле зрения, благодаря чему кроме работы в режиме спектрографа, этот телескоп способен получать прекрасные фотографии небесных объектов с большим разрешением.


Самый большой телескоп в мире ()

Стоит на вершине потухшего вулкана Мучачос на одном из Канарских островов, на высоте 2396 м. Диаметр главного зеркала – 10,4 м . В создании этого телескопа принимали участие Испания , Мексика и США. Между прочим, этот интернациональный проект обошелся в 176 млн. долларов США, из которых 51% заплатила Испания.

Зеркало Большого Канарского Телескопа, составленное из 36 шестиугольных частей – крупнейшее из существующих на сегодняшний день в мире. Хотя это и самый большой телескоп в мире по размеру зеркала, нельзя назвать его самым мощным по оптическим показателям, так как в мире существуют системы, превосходящие его по своей зоркости.


Расположен на горе Грэхем, на высоте 3,3 км, в штате Аризона (США). Этот телескоп ринадлежит Международной Обсерватории Маунт-Грэм и строился на деньги США, Италии и Германии . Сооружение представляет собой систему из двух зеркал диаметром по 8,4 метра, что по светочувствительности эквивалентно одному зеркалу диаметром 11,8 м . Центры двух зеркал находятся на расстоянии 14,4 метра, что делает разрешающую способность телескопа эквивалентной 22-метровому, а это почти в 10 раз больше, чем у знаменитого космического телескопа "Хаббла". Оба зеркала Большого Бинокулярного Телескопа являются частью одного оптического прибора и вместе представляют собой один огромный бинокль – самый мощный оптический прибор в мире на данный момент.


Keck I и Keck II – еще одна пара телескопов-близнецов. Располагаются по соседству с телескопом «Субару» на вершине гавайского вулкана Мауна-Кеа (высота 4139 м). Диаметр главного зеркала каждого из Кеков составляет 10 метров - каждый из них в отдельности является вторым по величине в мире телескопом после Большого Канарского. Но эта система телескопов превосходит Канарский по «зоркости». Параболические зеркала этих телескопов составлены из 36 сегментов, каждый из которых снабжен специальной опорной системой, с компьютерным управлением.


Очень Большой Телескоп расположен в пустыне Атакама в горном массиве чилийских Анд, на горе Параналь, 2635 м над уровнем моря. И принадлежит Европейской Южной Обсерватории (ESO), включающей в себя 9 европейских стран.

Система из четырех телескопов по 8,2 метра, и еще четырех вспомогательных по 1,8 метра по светосиле эквивалентна одному прибору с диаметром зеркала 16,4 метра.

Каждый из четырех телескопов может работать и отдельно, получая фотографии, на которых видны звезды до 30-й звездной величины. Все телескопы сразу работают редко, это слишком затратно. Чаще каждый из больших телескопов работает в паре со своим 1,8 метровым помощником. Каждый из вспомогательных телескопов может двигаться по рельсам относительно своего «большого брата», занимая наиболее выгодное для наблюдения данного объекта положение. Очень Большой Телескоп – самая продвинутая астрономическая система в мире. На нем была сделана масса астрономических открытий, например, было получено первое в мире прямое изображение экзопланеты.


Космический телескоп «Хаббл»

Космический телескоп «Хаббл» - совместный проект NASA и Европейского космического агентства, автоматическая обсерватория на земной орбите, названная в честь американского астронома Эдвина Хаббла. Диаметр его зеркала только 2,4 м, что меньше самых больших телескопов на Земле. Но из-за отсутствия влияния атмосферы, разрешающая способность телескопа в 7 - 10 раз больше аналогичного телескопа, расположенного на Земле . «Хаббл» принадлежит множество научных открытий: столкновение Юпитера с кометой, изображение рельефа Плутона , полярные сияния на Юпитере и Сатурне...


Телескоп "Хаббл" на земной орбите

March 23rd, 2018

Телескоп «Джеймс Уэбб» — это орбитальная инфракрасная обсерватория, которая должна заменить тот самый знаменитый космический телескоп «Хаббл». «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре и стоить около 6.8 млрд долларов. Для сравнения, диаметр зеркала «Хаббла» — «всего» 2.4 метра.

Работа над его идет около 20 лет! Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года. Потом объявили о запуске в 2018, но по последним сведениям телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года.

Давайте посмотрим как собирали это уникальное устройство:


Сама система очень сложная, ее собирают поэтапно, проверяя работоспособность многих элементов и уже собранной конструкции в ходе каждого этапа. Начиная с середины июля телескоп стали проверять на работоспособность при сверхнизких температурах — от 20 до 40 градусов Кельвина. В течение нескольких недель тестировалась работа 18 главных зеркальных секций телескопа для того, чтобы убедиться в возможности их работы в качестве единого целого. Диаметр составного зеркала телескопа равен 6,5 метров.

Позже, после того, как оказалось, что все хорошо, ученые проверили систему ориентирования, эмулируя свет далекой звезды. Телескоп смог обнаружить этот свет, все оптические системы работали в штатном режиме. Затем телескоп смог определить местоположение «звезды», отследив ее характеристики и динамику. Ученые убедились, что в космосе телескоп будет работать вполне корректно.

Телескоп «Джеймс Уэбб» должен быть размещен на гало-орбите в точке Лагранжа L2 системы Солнце — Земля. А в космосе холодно. Здесь показаны испытания, проводимые 30 марта 2012, направленные на изучение возможности противостоять холодным температурам пространства. (Фото Chris Gunn | NASA):

в 2017 году телескоп «Джеймс Уэбб» опять провел в экстремальных условиях. Его поместили в камеру, температура в которой достигала всего 20 градусов Цельсия выше абсолютного нуля. Кроме того, в этой камере не было воздуха — ученые создали вакуум для того, чтобы поместить телескоп в условия открытого космоса.

«Теперь мы убедились в том, что НАСА и партнеры агентства создали отличный телескоп и набор научных инструментов», — заявил Билл Очс, руководитель проекта «Джеймс Уэбб» в Центре космических полетов имени Годдарда.

«Джеймс Уэбб» будет обладать составным зеркалом 6.5 метров в диаметре с площадью собирающей поверхности 25 м². Много это, или мало? (Фото Chris Gunn):

Но и это еще не все, телескопу предстоит пройти еще много проверок, прежде, чем его признают полностью готовым к отправке. Недавние тесты показали, что устройство может работать в вакууме при сверхнизких температурах. Именно такие условия царят в точке L2 Лагранжа в системе Земля-Солнце.

В начале Февраля «Джеймс Уэбб» перевезут в Хьюстон, где он будет помещен в самолет Локхид C-5 «Гэлэкси». На борту этого гиганта телескоп полетит в Лос-Анжелес, где его соберут окончательно, смонтировав солнцезащитный экран. Ученые после этого проверят, работает ли вся система с таким экраном, и нормально ли выдерживает устройство вибрации и нагрузки в ходе полета.

Сравним с «Хабблом». Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе:

4. Полномасштабная модель космического телескопа Джеймса Уэбба в Остине, штат Техас, 8 марта 2013. (Фото Chris Gunn):



5. Проект телескопа представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств. (Фото Chris Gunn):



6. Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года.(Фото Chris Gunn):



7. Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6.5 метра, чтобы измерить свет от самых далёких галактик.


Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади. (Фото Chris Gunn):



8. Не только у нас всё дорожает от начальной сметы. Так, стоимость телескопа «Джеймс Уэбб» превысила изначальные расчёты по меньшей мере в 4 раза. Планировалось, что телескоп обойдётся в 1,6 млрд долл. и будет запущен в 2011 году, однако по новым оценкам стоимость может составить 6.8 млрд, но уже есть сведения о превышении и этого лимита до 10 млрд. (Фото Chris Gunn):



9. Это спектрограф ближнего инфракрасного диапазона. Он будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. (Фото Chris Gunn):





Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря «Джеймсу Уэббу» ожидается настоящий прорыв в экзопланетологии — возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет.


11. Инженеры тестируют в камере. систему подъема телескопа, 9 сентября 2014. (Фото Chris Gunn):



12. Исследование зеркал, 29 сентября 2014. Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой — для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области. (Фото Chris Gunn):



13. Очистка зеркала сухим льдом из двуокиси углерода. Тряпками здесь никто не трет. (Фото Chris Gunn):



14. Камера A — это гигантская испытательная камера с вакуумом, которая будет моделировать космическое пространства при испытаниях телескопа «Джеймса Уэбба», 20 мая 2015. (Фото Chris Gunn):







17. Размер каждого из 18 шестигранных сегментов зеркала составляет 1.32 метра от ребра до ребра. (Фото Chris Gunn):



18. Масса непосредственно самого́ зеркала в каждом сегменте — 20 кг, а масса всего сегмента в сборе — 40 кг. (Фото Chris Gunn):



19. Для зеркала телескопа «Джеймса Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1.3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента. (Фото Chris Gunn):



20. Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку. (Фото Chris Gunn):



21. По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6—29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах. (Фото Chris Gunn):



22. Работа над телескопом в ноябре 2016 года. (Фото Chris Gunn):



23. НАСА завершило сборку космического телескопа «Джеймс Уэбб» в 2016 году и приступило к его испытаниям. Это снимок от 5 марта 2017 года. На длинной выдержке техники выглядят призраками. (Фото Chris Gunn):







26. Дверь в ту самую камеру А с 14-й фотографии, в которой моделируется космическое пространство. (Фото Chris Gunn):





28. Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года. Отвечая на вопрос о том, что ученые ожидают узнать с помощью нового телескопа, ведущий научный сотрудник проекта Джон Мэтер сказал: «Надеюсь, мы найдем что-то, о чем никто ничего не знает». (Фото Chris Gunn):


«Джеймс Уэбб» очень сложная система, которая состоит из тысяч отдельных элементов. Они формируют зеркало телескопа и его научные инструменты. Что касается последних, то это такие устройства:

Камера ближнего инфракрасного диапазона (Near-Infrared Camera);
- Прибор для работы в среднем диапазоне инфракрасного излучения (Mid-Infrared Instrument);
- Спектрограф ближнего инфракрасного диапазона (Near-Infrared Spectrograph);
- Датчик точного наведения c устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом (Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph).

Очень важно защитить телескоп экраном, который закроет его от Солнца. Дело в том, что именно благодаря этому экрану «Джеймс Уэбб» сможет обнаружить даже очень слабый свет самых удаленных звезд. Для развертывания экрана создана сложная система из 180 разных устройств и других элементов. Размеры его составляют 14*21 метр. «Это заставляет нас нервничать», — признал глава проекта разработки телескопа.

Основными задачами телескопа, который сменит в строю «Хаббл» являются: обнаружение света первых звёзд и галактик, сформированных после Большого взрыва, изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также «Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало.

источники

Термин телескоп в буквальном смысле означает «далеко смотрю». Современные устройства оптического типа позволяют астрономам изучать нашу Солнечную систему, а также открывать новые планеты, находящиеся за ее пределами. В ниже представленную десятку вошли самые мощные телескопы в мире.

10. БТА

БТА открывает рейтинг самых мощных телескопов, имеющий одно из крупнейших монолитных зеркал во всем мире. Этот гигант, построенный в 70-х годах прошлого века, по сей день удерживает преимущества в плане самого большого астрономического купола. Зеркало диаметром свыше 6 метров сделано в виде параболоида вращения. Его масса составляет сорок две тонны, если не учитывать вес оправы. Общая масса этой громадины равна 850 тонн. Главным конструктором БТА является Б.К. Ионнисани. Покрытие отражающее зеркала было изготовлено из незащищенного алюминия. Рабочий слой требует замены каждые десять лет.

9. Гигантский Магелланов телескоп

Гигантский Магелланов телескоп входит в десятку наиболее крупных и мощных во всем мире. Полное завершение его строительства планируется на 2020 год. Для собирания света будет использована система, включающая в себя семь первичных зеркал, каждое из которых станет обладателем диаметра в 8,4 м. Суммарная апертура устройства будет соответствовать телескопу, имеющего зеркало более 24 м диаметром. Предположительно МГТ будет в несколько раз мощнее всех современных телескопов. Планируется, что МГТ станет самым мощным и поможет открыть много новых экзопланет.

8. Джемини Юг и Джемини Север

Джемини Юг и Джемини Север представляют собой комплекс, в который включены два телескопа, высотой в восемь метров. Они предназначены для обеспечения полноценного беспрепятственного покрытия небосводов и расположены на разных вершинах. Это одни из самых мощных и совершенных инфракрасных оптических телескопов на сегодняшний день. Приборы обеспечивают получение максимально четких снимков, что достигается с помощью спектроскопии и адаптивной оптики. Управление телескопами часто осуществляется удаленно. Устройства принимают активное участие в поиске экзопланет.

7. Субару

Субару – один из мощнейших телескопов в мире, созданный японскими учеными. Находится он на вершине вулкана Мауна-Кеа. Имеет одно из самых больших монолитных зеркал в мире диаметром более восьми метров. Субару способен обнаруживать планеты, принадлежащие не нашей Солнечной системе, а также может устанавливать их размер при помощи исследования планетного света и обнаруживать газы, которые преобладают в атмосфере экзопланет.

6. Hobby-Eberly Telescope

Hobby-Eberly Telescope входит в десятку наиболее мощных телескопов на сегодняшний день с диаметром главного зеркала, превышающего девять метров. При его создании было использовано множество нововведений, что является одним из главных преимуществ данного прибора. Основное зеркало включает в себя 91 элемент, функционирующих как единое целое. Хобби - Эберли используется как для изучения нашей солнечной системы, так и для исследования внегалактических объектов. С помощью него было открыто несколько экзопланет.

5. SALT

SALT – полное название звучит, как Southern African Large Telescope. Оптический прибор имеет большое главное зеркало, диаметр которого равен одиннадцати метрам и состоит из массива зеркал. Расположился он на холме высотой почти 1,8 км неподалеку от провинции Сутерланд. С помощью данного устройства специалисты в области астрономии проводят исследования близлежащих галактик и находят новые планеты. Данное наимощнейшее астрономическое устройство позволяет проводить различного рода анализы излучения астрономических объектов.

4. LBT

LBT или Large Binocular Telescope в переводе на русский означает Большой бинокулярный телескоп. Является одним из самых передовых в технологическом плане приборов, который обладает максимальным оптическим разрешением в мире. Разместился он на высоте более чем 3 километров на горе под названием Грэхем. Устройство включает в себя пару громаднейших зеркал параболического типа диаметром в 8,4 м. Они установлены на общем креплении, отсюда и название «бинокулярный». По своей мощности астрономический прибор эквивалентен телескопу с одним зеркалом, имеющем диаметр более 11 метров. Благодаря необычному строению, устройство способно выдавать снимки одного объекта одновременно через разные фильтры. Это является одним из его главных преимуществ, ведь благодаря этому можно значительно сократить время на получение всей необходимой информации.

3. Keck I и Keck II

Keck I и Keck II расположились на самой вершине горы Мауна-Кеа, высота которой превышает 4 километра над уровнем моря. Данные астрономические приборы способны работать в режиме интерферометра, который используется в астрономии для телескопов с высоким разрешением. Они могут заменить телескоп с большой апертурой на решетку устройств с наименьшими апертурами, которые соединены по принципу интерферометра. Каждое из зеркал состоит из тридцати шести малых шестиугольных. Общий их диаметр составляет десять метров. Телескопы были созданы по системе Ричи – Кретьена. Управление устройствами близнецами ведется из офисов штаб-квартиры Ваймеа. Именно благодаря этим астрономическим агрегатам было найдено большинство планет, расположенных вне Солнечной системы.

2. GTC

GTC – данная аббревиатура в переводе на русский означает Большой Канарский телескоп. Прибор действительно имеет впечатляющие размеры. Данный оптический телескоп-рефлектор имеет самое огромное зеркало в мире, диаметр которого превышает десять метров. Оно сделано из 36 шестиугольных сегментов, которые были получены из стеклокристаллических материалов Zerodur. Данный астрономический прибор имеет активную и адаптивную оптику. Расположился он на самой вершине потухшего вулкана Мучачос на Канарских островах. Особенностью устройства является способность видеть различные объекты на очень большом расстоянии в миллиард более слабые, чем способен различать невооруженный человеческий глаз.

1. VLT

VLT или Very Large Telescope, что в переводе на русский означает «очень большой телескоп». Он представляет собой комплекс приборов такого типа. В него входят четыре отдельных и такое же количество оптических телескопов. Это самый большой оптический прибор в мире по общей площади зеркал. Также он оснащен максимальной разрешающей способностью в мире. Расположилось астрономическое устройство в Чили на высоте более 2,6 км на горе с названием Серро Параналь, расположенной в пустыне неподалеку от Тихого океана. Благодаря этому мощнейшему телескопическому устройству пару лет назад ученым наконец-то удалось получить четкие фотографии планеты Юпитер.